Imaging and characterizing cells using tomography.

[1]  D. J. De Rosier,et al.  Reconstruction of Three Dimensional Structures from Electron Micrographs , 1968, Nature.

[2]  D. DeRosier,et al.  The reconstruction of a three-dimensional structure from projections and its application to electron microscopy , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  H. Steen,et al.  Characteristics of a simple, high-resolution flow cytometer based o a new flow configuration. , 1979, Biophysical journal.

[4]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. , 1981, Biochemistry.

[5]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[6]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[7]  Hans M. Hertz,et al.  Cryogenic liquid-jet target for debris-free laser-plasma soft x-ray generation , 1998 .

[8]  W Baumeister,et al.  Electron tomography of molecules and cells. , 1999, Trends in cell biology.

[9]  P. Mazzarello A unifying concept: the history of cell theory , 1999, Nature Cell Biology.

[10]  B. Niemann,et al.  Computed tomography of cryogenic biological specimens based on X-ray microscopic images. , 2000, Ultramicroscopy.

[11]  David T. Attwood,et al.  Soft x-ray microscopy to 25 nm with applications to biology and magnetic materials , 2001 .

[12]  B. Niemann,et al.  Tomographic imaging of biological specimens with the cryo transmission X-ray microscope , 2001 .

[13]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[14]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[15]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[16]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[17]  Gerry McDermott,et al.  X-ray tomography of whole cells. , 2005, Current opinion in structural biology.

[18]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[19]  R. Tsien Building and breeding molecules to spy on cells and tumors , 2005, FEBS letters.

[20]  S. Subramaniam Bridging the imaging gap: visualizing subcellular architecture with electron tomography. , 2005, Current opinion in microbiology.

[21]  V. Lučić,et al.  Structural studies by electron tomography: from cells to molecules. , 2005, Annual review of biochemistry.

[22]  Cryo- Electron Tomography and Fluorescence Microscopy of Unicellular Algae in Vitreous Cryosections , 2005, Microscopy and Microanalysis.

[23]  Bruce Harteneck,et al.  Imaging at high spatial resolution: Soft x-ray microscopy to 15 nm , 2006 .

[24]  Anne Sakdinawat,et al.  Soft-X-ray microscopy using spiral zone plates. , 2007, Optics letters.

[25]  T. Wilhein,et al.  Compact high-resolution differential interference contrast soft x-ray microscopy , 2008 .

[26]  Gerry McDermott,et al.  Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. , 2008, Journal of structural biology.

[27]  S. Halford,et al.  An end to 40 years of mistakes in DNA-protein association kinetics? , 2009, Biochemical Society transactions.

[28]  G. McDermott,et al.  High‐aperture cryogenic light microscopy , 2009, Journal of microscopy.

[29]  K. Nugent,et al.  Imaging cellular architecture with X-rays. , 2010, Current opinion in structural biology.

[30]  Gerry McDermott,et al.  Quantitative analysis of yeast internal architecture using soft X‐ray tomography , 2011, Yeast.

[31]  Roger W. Falcone,et al.  New directions in X-ray microscopy , 2011 .

[32]  Charles S. Peskin,et al.  The influence of volume exclusion by chromatin on the time required to find specific DNA binding sites by diffusion , 2011, Proceedings of the National Academy of Sciences.

[33]  J. Briggs,et al.  Imaging cellular structure across scales with correlated light, superresolution, and electron microscopy , 2012, Molecular Biology of the Cell.

[34]  S. Rehbein,et al.  Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells , 2012, Journal of structural biology.

[35]  G. McDermott,et al.  Visualizing cell architecture and molecular location using soft x-ray tomography and correlated cryo-light microscopy. , 2012, Annual review of physical chemistry.

[36]  Carolyn A. Larabell,et al.  Nuclear Aggregation of Olfactory Receptor Genes Governs Their Monogenic Expression , 2012, Cell.

[37]  T. Deerinck,et al.  Picking faces out of a crowd: genetic labels for identification of proteins in correlated light and electron microscopy imaging. , 2012, Methods in cell biology.

[38]  U. Vogt,et al.  Laboratory cryo soft X-ray microscopy. , 2012, Journal of structural biology.

[39]  E. Cox,et al.  Gene location and DNA density determine transcription factor distributions in Escherichia coli , 2012, Molecular systems biology.

[40]  G. McDermott,et al.  Visualizing and quantifying cell phenotype using soft X‐ray tomography , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  Chao Yang,et al.  Automatic alignment and reconstruction of images for soft X-ray tomography. , 2012, Journal of structural biology.

[42]  H M Hertz,et al.  Compact x-ray microscope for the water window based on a high brightness laser plasma source. , 2012, Optics express.

[43]  Karolin Luger,et al.  New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? , 2012, Nature Reviews Molecular Cell Biology.

[44]  Lucy M. Collinson,et al.  Cryo-soft X-ray tomography: a journey into the world of the native-state cell , 2013, Protoplasma.

[45]  Elizabeth A. Smith,et al.  Correlative microscopy methods that maximize specimen fidelity and data completeness, and improve molecular localization capabilities. , 2013, Journal of structural biology.

[46]  Samuel A. Isaacson,et al.  The Influence of Spatial Variation in Chromatin Density Determined by X-Ray Tomograms on the Time to Find DNA Binding Sites , 2013, Bulletin of mathematical biology.

[47]  G. McDermott,et al.  Nanoimaging cells using soft X-ray tomography. , 2013, Methods in molecular biology.

[48]  D Wolf,et al.  Weighted simultaneous iterative reconstruction technique for single-axis tomography. , 2014, Ultramicroscopy.

[49]  Elizabeth A. Smith,et al.  Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies. , 2014, Biophysical journal.

[50]  T. Misteli,et al.  Deep Imaging: the next frontier in microscopy , 2014, Histochemistry and Cell Biology.

[51]  Erik Franken,et al.  A 3D cellular context for the macromolecular world , 2014, Nature Structural &Molecular Biology.

[52]  Elizabeth A. Smith,et al.  Correlative cryogenic tomography of cells using light and soft x-rays. , 2014, Ultramicroscopy.

[53]  Elizabeth A. Smith,et al.  Putting Molecules in Their Place , 2014, Journal of cellular biochemistry.

[54]  Gerry McDermott,et al.  Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source. , 2014, Journal of synchrotron radiation.

[55]  L. Collinson,et al.  Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)☆ , 2014, Ultramicroscopy.

[56]  D. Attwood X-Rays and Extreme Ultraviolet Radiation: Principles and Applications , 2017 .