Efficient Preconditioning for an Optimal Control Problem with the Time-Periodic Stokes Equations

For the optimal control problem with time-periodic Stokes equations a practical robust preconditioner is presented. The discretization of the corresponding optimality system leads to a linear system with a large, sparse and complex 4-by-4 block matrix in saddle point form. We present a decoupling strategy, which reduces the system to two linear systems with a real 4-by-4 block matrix. Based on analytic results on preconditioners for time-harmonic control problems in Krendl et al. (Numer Math 124(1):183–213, 2013), a practical preconditioner is constructed, which is robust with respect to the mesh size h, the frequency ω and the control parameter ν. The result is illustrated by numerical examples with the preconditioned minimal residual method. Finally we discuss alternative stopping criteria.

[1]  Valeria Simoncini,et al.  Stability estimates and structural spectral properties of saddle point problems , 2013, Numerische Mathematik.

[2]  Max D. Gunzburger,et al.  Analysis and Approximation of the Velocity Tracking Problem for Navier-Stokes Flows with Distributed Control , 2000, SIAM J. Numer. Anal..

[3]  Helmut Gfrerer,et al.  On Metric Pseudo-(sub)Regularity of Multifunctions and Optimality Conditions for Degenerated Mathematical Programs , 2014 .

[4]  Kent-André Mardal,et al.  Uniform preconditioners for the time dependent Stokes problem , 2004, Numerische Mathematik.

[5]  Valeria Simoncini,et al.  An Optimal Iterative Solver for Symmetric Indefinite Systems Stemming from Mixed Approximation , 2010, TOMS.

[6]  Clemens Pechstein,et al.  On Iterative Substructuring Methods for Multiscale Problems , 2014 .

[7]  Clemens Hofreither,et al.  A Rigorous Error Analysis of Coupled FEM-BEM Problems with Arbitrary Many Subdomains , 2013 .

[8]  Ulrich Langer,et al.  Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem , 2013, J. Num. Math..

[9]  Maxim A. Olshanskii,et al.  Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations , 2006, Numerische Mathematik.

[10]  Walter Zulehner,et al.  The Ciarlet-Raviart Method for Biharmonic Problems on General Polygonal Domains: Mapping Properties and Preconditioning , 2015, SIAM J. Numer. Anal..

[11]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[12]  Clemens Hofreither,et al.  FETI Solvers for Non-standard Finite Element Equations Based on Boundary Integral Operators , 2014 .

[13]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[14]  Maxim A. Olshanskii,et al.  On the Convergence of a Multigrid Method for Linear Reaction-Diffusion Problems , 2000, Computing.