Single 2×1 domain orientation on Si(001) surfaces using aperiodic Bi line arrays

Studies of Bi heteroepitaxy on Si(001) have shown that lines grow to lengths of up to 500nm if the substrate is heated to above the Bi desorption temperature (500°C) during or after Bi deposition. Unlike many other nanoline systems, the lines formed by this nonequilibrium growth process have no detectable width dispersion. Although much attention has been given to the atomic geometery of the line, in this paper, we focus on how the lines can be used to create a majority 2×1 domain orientation. It is demonstrated that the Bi lines can be used to produce a single-domain orientation on Si(001) if the lines are grown on Si(001) surfaces with a regular distribution of single height steps. This is a compelling example of how a nanoscale motif can be used to modify mesoscopic surface structure on Si(001).

[1]  J. Nogami,et al.  Growth of parallel rare-earth silicide nanowire arrays on vicinal Si(001) , 2003 .

[2]  F. D. Schryver,et al.  Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy , 2003 .

[3]  Jill A. Miwa,et al.  Two linear beetle-type scanning tunneling microscopes , 2003 .

[4]  D. Bowler,et al.  Interaction between electronic structure and strain in Bi nanolines on Si(001) , 2003 .

[5]  G. P. Srivastava,et al.  Self-organized Bi lines on the Si(001) surface: A theoretical study , 2002 .

[6]  G. P. Srivastava,et al.  Ab initio study of the self-organised Bi-lines on the Si(001) surface , 2002 .

[7]  D. Bowler,et al.  Structure of Bi nanolines: using tight binding to search parameter space , 2002 .

[8]  D. Bowler,et al.  Stress relief as the driving force for self-assembled bi nanolines. , 2002, Physical review letters.

[9]  D. Bowler,et al.  Bi nanoline passivity to attack by radical hydrogen or oxygen , 2002 .

[10]  F. Shoji,et al.  Scanning tunneling microscopy observation of Bi-induced surface structures on the Si(100) surface , 2001 .

[11]  J. Crain,et al.  Self-assembly of one-dimensional nanostructures at silicon surfaces , 2001 .

[12]  D. Bowler Structure of atomically perfect lines of bismuth in the Si(001) surface , 2000 .

[13]  R. Stanley Williams,et al.  Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001) , 2000 .

[14]  F. Shoji,et al.  Structure of Bi-Dimer Linear Chains on a Si(100)Surface : A Scanning Tunneling Microscopy Study , 2000 .

[15]  H. Zandvliet Energetics of Si(001) , 2000 .

[16]  M. Shimomura,et al.  Structures of the ‘nanowire’ and 2×n of Bi/Si(001) , 2000 .

[17]  D. Bowler,et al.  Atomically perfect bismuth lines on Si(001) , 1999 .

[18]  F. Shoji,et al.  Bismuth-induced surface structure of Si(100) studied by scanning tunneling microscopy , 1999 .

[19]  N. Motta,et al.  Scanning tunneling microscopy studies of Ge/Si films on Si(111): From layer by layer to quantum dots , 1998 .

[20]  F. Shoji,et al.  Scanning tunneling microscopy observation of bismuth growth on Si(100) surfaces , 1997 .

[21]  Zhang,et al.  Atomistic Processes in the Early Stages of Thin-Film Growth , 1997, Science.

[22]  Dietrich E. Wolf,et al.  Transition from Island Growth to Step-Flow Growth for Si/Si(100) Epitaxy , 1997 .

[23]  Johnson,et al.  Strain in Nanoscale Germanium Hut Clusters on Si(001) Studied by X-Ray Diffraction. , 1996, Physical review letters.

[24]  A. Latyshev,et al.  Transformations of the stepped Si(001) surface structure induced by heating the specimen by a current , 1991 .

[25]  Savage,et al.  Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). , 1990, Physical review letters.

[26]  Eaglesham,et al.  Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.

[27]  Chadi Dj,et al.  Stabilities of single-layer and bilayer steps on Si(001) surfaces. , 1987 .

[28]  Rudolf M. Tromp,et al.  Scanning tunneling microscopy of Si(001). , 1986, Physical review. B, Condensed matter.

[29]  Hamers,et al.  Si(001) Dimer structure observed with scanning tunneling microscopy. , 1985, Physical review letters.

[30]  H. E. Farnsworth,et al.  Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon , 1959 .