On the Chvátal Rank of Certain Inequalities

The Chvatal rank of an inequality ax ≤ b with integral components and valid for the integral hull of a polyhedron P, is the minimum number of rounds of Gomory-Chvatal cutting planes needed to obtain the given inequality. The Chvatal rank is at most one if b is the integral part of the optimum value z(a) of the linear program max{ax : x ∈ P}. We show that, contrary to what was stated or implied by other authors, the converse to the latter statement, namely, the Chvatal rank is at least two if b is less than the integral part of z(a), is not true in general. We establish simple conditions for which this implication is valid, and apply these conditions to several classes of facet-inducing inequalities for travelling salesman polytopes.

[1]  Sylvia C. Boyd,et al.  Optimizing over the subtour polytope of the travelling salesman problem , 1990, Math. Program..

[2]  William H. Cunningham,et al.  Small Travelling Salesman Polytopes , 1991, Math. Oper. Res..

[3]  Friedrich Eisenbrand,et al.  On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..

[4]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[5]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[6]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[7]  Ellis L Johnson,et al.  PROGRAMMING IN NETWORKS AND GRAPHS , 1965 .

[8]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.

[9]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[10]  Mark Evan Hartmann,et al.  Cutting planes and the complexity of the integer hull , 1989 .

[11]  Maurice Queyranne,et al.  Ladders for Travelling Salesmen , 1995, SIAM J. Optim..

[12]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[13]  William J. Cook,et al.  On cutting-plane proofs in combinatorial optimization , 1989 .

[14]  Leslie E. Trotter,et al.  Hermite Normal Form Computation Using Modulo Determinant Arithmetic , 1987, Math. Oper. Res..

[15]  László Lovász,et al.  Brick decompositions and the matching rank of graphs , 1982, Comb..

[16]  Matteo Fischetti Clique tree inequalities define facets of the asymmetric traveling salesman polytope , 1995 .

[17]  Leslie E. Trotter,et al.  On stable set polyhedra for K1, 3-free graphs , 1981, J. Comb. Theory, Ser. B.

[18]  William R. Pulleyblank,et al.  Clique Tree Inequalities and the Symmetric Travelling Salesman Problem , 1986, Math. Oper. Res..

[19]  Egon Balas,et al.  Facets of the three-index assignment polytope , 1989, Discret. Appl. Math..

[20]  Matteo Fischetti,et al.  On the separation of maximally violated mod-k cuts , 1999, Math. Program..

[21]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[22]  Matteo Fischetti,et al.  Three Facet-Lifting Theorems for the Asymmetric Traveling Salesman Polytope , 1992, IPCO.

[23]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[24]  Maurice Queyranne,et al.  Symmetric Inequalities and Their Composition for Asymmetric Travelling Salesman Polytopes , 1995, Math. Oper. Res..