Isolable tris(alkyne) and bis(alkyne) complexes of gold(I).
暂无分享,去创建一个
G. Frenking | H. V. Rasika Dias | M. Yousufuddin | C. Dash | M. A. Celik | Animesh Das | M. A. Çeli̇k
[1] A. Corma,et al. Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved? , 2011 .
[2] G. Domínguez,et al. Recent advances in [2+2+2] cycloaddition reactions. , 2011, Chemical Society reviews.
[3] P. Chou,et al. Octanuclear gold(I) alkynyl-diphosphine clusters showing thermochromic luminescence. , 2011, Chemical communications.
[4] R. Widenhoefer,et al. Synthesis and equilibrium binding studies of cationic, two-coordinate gold(I) π-alkyne complexes. , 2011, Journal of organometallic chemistry.
[5] A. Corma,et al. Gold-catalyzed carbon-heteroatom bond-forming reactions. , 2011, Chemical reviews.
[6] A. S. K. Hashmi,et al. Homogene Gold‐Katalyse jenseits von Vermutungen und Annahmen – charakterisierte Intermediate , 2010 .
[7] A. Hashmi. Homogeneous gold catalysis beyond assumptions and proposals--characterized intermediates. , 2010, Angewandte Chemie.
[8] M. Jevric,et al. Phosphine-gold(I) derivatives of 1,1′-bis(alkynyl)metallocenes: Molecular structures of Fc’(CCX)2 [X = Au(PPh3), SiMe3] and Au4{(CC)2Fc’}2(PPh3)2 [Fc’ = Fe(η-C5H4-)2] , 2010 .
[9] A. Echavarren,et al. Gold(I)-catalyzed intermolecular [2+2] cycloaddition of alkynes with alkenes. , 2010, Journal of the American Chemical Society.
[10] C. A. Russell,et al. Cationic Au(I) alkyne complexes: synthesis, structure and reactivity. , 2010, Chemical communications.
[11] H. Schmidbaur,et al. Gold η2-Coordination to Unsaturated and Aromatic Hydrocarbons: The Key Step in Gold-Catalyzed Organic Transformations , 2010 .
[12] H. V. Rasika Dias,et al. Organometallic wheels based on coinage metal ions and norbornene: syntheses and structural characterization of [M(norbornene)(3)][SbF(6)] (M = Au, Ag, Cu). , 2009, Chemical communications.
[13] A. Fürstner. Gold and platinum catalysis--a convenient tool for generating molecular complexity. , 2009, Chemical Society reviews.
[14] W. Thiel,et al. Structure and bonding in neutral and cationic 14-electron gold alkyne pi complexes. , 2009, Chemistry.
[15] H. V. Rasika Dias,et al. Monomeric copper(I), silver(I), and gold(I) alkyne complexes and the coinage metal family group trends. , 2009, Journal of the American Chemical Society.
[16] S. Nolan,et al. N-heterocyclic carbenes in late transition metal catalysis. , 2009, Chemical reviews.
[17] H. V. Rasika Dias,et al. Gold(I) chloride coordinated 3-hexyne. , 2009, Inorganic chemistry.
[18] F Dean Toste,et al. Ligand effects in homogeneous Au catalysis. , 2008, Chemical reviews.
[19] A. Arcadi. Alternative synthetic methods through new developments in catalysis by gold. , 2008, Chemical reviews.
[20] A. Echavarren,et al. Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. , 2008, Chemical reviews.
[21] Zigang Li,et al. Gold-catalyzed organic transformations. , 2008, Chemical reviews.
[22] N. Shapiro,et al. Synthesis and structural characterization of isolable phosphine coinage metal π-complexes , 2008, Proceedings of the National Academy of Sciences.
[23] T. Cundari,et al. Synthesis and characterization of the gold(I) tris(ethylene) complex [Au(C2H4)3][SbF6]. , 2008, Angewandte Chemie.
[24] A Stephen K Hashmi,et al. Gold-catalyzed organic reactions. , 2007, Chemical reviews.
[25] C. Che,et al. Structure determination of homoleptic AuI, AgI, and CuI aryl/alkylethynyl coordination polymers by X-ray powder diffraction. , 2005, Chemistry.
[26] Nianyong Zhu,et al. Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown‐6 Complexes with Planar η2,η2‐Coordinated Gold(I) Centers , 2004 .
[27] G. Frenking,et al. Energy Partitioning Analysis of the Bonding in Ethylene and Acetylene Complexes of Group 6, 8, and 11 Metals: (CO)5TM−C2Hx and Cl4TM−C2Hx (TM = Cr, Mo, W), (CO)4TM−C2Hx (TM = Fe, Ru, Os), and TM+−C2Hx (TM = Cu, Ag, Au)†,§,⊥ , 2004 .
[28] G. Frenking,et al. Energy partitioning analysis of the bonding in L2TM-C2H2 and L2TM-C2H4 (TM = Ni, Pd, Pt; L2 = (PH3)2, (PMe3)2, H2PCH2PH2, H2P(CH2)2PH2) , 2003 .
[29] F. Olbrich,et al. Monomeric and Dimeric Cyclooctyne-Stabilized Complexes of Copper(I)1 , 2000 .
[30] S. Saito,et al. Recent advances in the transition-metal-catalyzed regioselective approaches to polysubstituted benzene derivatives. , 2000, Chemical reviews.
[31] U. Behrens,et al. Strong coordination of cycloheptynes by gold( I ) chloride: synthesis and structure of two complexes of the type [(alkyne)AuCl] , 1998 .
[32] R. Gleiter,et al. Trigonal-Planar-Coordinated Organogold(I) Complexes Stabilized by Organometallic 1,4-Diynes: Reaction Behavior, Structure, and Bonding† , 1997 .
[33] L. Zsolnai,et al. Unusual coordination mode of organogold(I) compounds: trigonal-planar complexation of gold (I) centers by alkynes , 1996 .
[34] Gernot Frenking,et al. Theoretical Studies of Organometallic Compounds. XIX. Complexes of Transition Metals in High and Low Oxidation States with Side-On-Bonded .pi.-Ligands , 1995 .
[35] David J. Williams,et al. A Gold(I) [2]Catene† , 1995 .
[36] David J. Williams,et al. Ein Gold(I)-[2]Catenan† , 1995 .
[37] G. Frenking,et al. Comparative Theoretical Study of Lewis Acid-Base Complexes of BH3, BF3, BCl3, AlCl3, and SO2 , 1994 .
[38] G. Wittig,et al. Reaktionen von Cyclooctin mit Übergangsmetall‐Derivaten , 1972 .
[39] R. Hüttel,et al. π‐ und ρ‐Komplexe aus Dimethylacetylen und Gold(III)‐chlorid als Vorstufen der Bildung von 3.4‐Dichlor‐tetramethyl‐cyclobuten , 1972 .