Isolable tris(alkyne) and bis(alkyne) complexes of gold(I).

Golden trefoils: Tris(alkyne)gold complex [(coct)(3)Au][SbF(6)] (see picture; 1-SbF(6)) can be synthesized from cyclooctyne (coct) and AuSbF(6) generated in situ. Treatment of AuCl with cyclooctyne led to the bis(alkyne)gold complex [Au(coct)(2)Cl] (2). DFT analysis indicates that the cyclooctyne ligands are net electron donors in 1 but overall electron acceptors in 2. AuSbF(6) is shown to mediate [2+2+2] cycloaddition reactions of alkynes.

[1]  A. Corma,et al.  Intermolecular [2 + 2] Cycloaddition of Alkyne-Alkene Catalyzed by Au(I) Complexes. What Are the Catalytic Sites Involved? , 2011 .

[2]  G. Domínguez,et al.  Recent advances in [2+2+2] cycloaddition reactions. , 2011, Chemical Society reviews.

[3]  P. Chou,et al.  Octanuclear gold(I) alkynyl-diphosphine clusters showing thermochromic luminescence. , 2011, Chemical communications.

[4]  R. Widenhoefer,et al.  Synthesis and equilibrium binding studies of cationic, two-coordinate gold(I) π-alkyne complexes. , 2011, Journal of organometallic chemistry.

[5]  A. Corma,et al.  Gold-catalyzed carbon-heteroatom bond-forming reactions. , 2011, Chemical reviews.

[6]  A. S. K. Hashmi,et al.  Homogene Gold‐Katalyse jenseits von Vermutungen und Annahmen – charakterisierte Intermediate , 2010 .

[7]  A. Hashmi Homogeneous gold catalysis beyond assumptions and proposals--characterized intermediates. , 2010, Angewandte Chemie.

[8]  M. Jevric,et al.  Phosphine-gold(I) derivatives of 1,1′-bis(alkynyl)metallocenes: Molecular structures of Fc’(CCX)2 [X = Au(PPh3), SiMe3] and Au4{(CC)2Fc’}2(PPh3)2 [Fc’ = Fe(η-C5H4-)2] , 2010 .

[9]  A. Echavarren,et al.  Gold(I)-catalyzed intermolecular [2+2] cycloaddition of alkynes with alkenes. , 2010, Journal of the American Chemical Society.

[10]  C. A. Russell,et al.  Cationic Au(I) alkyne complexes: synthesis, structure and reactivity. , 2010, Chemical communications.

[11]  H. Schmidbaur,et al.  Gold η2-Coordination to Unsaturated and Aromatic Hydrocarbons: The Key Step in Gold-Catalyzed Organic Transformations , 2010 .

[12]  H. V. Rasika Dias,et al.  Organometallic wheels based on coinage metal ions and norbornene: syntheses and structural characterization of [M(norbornene)(3)][SbF(6)] (M = Au, Ag, Cu). , 2009, Chemical communications.

[13]  A. Fürstner Gold and platinum catalysis--a convenient tool for generating molecular complexity. , 2009, Chemical Society reviews.

[14]  W. Thiel,et al.  Structure and bonding in neutral and cationic 14-electron gold alkyne pi complexes. , 2009, Chemistry.

[15]  H. V. Rasika Dias,et al.  Monomeric copper(I), silver(I), and gold(I) alkyne complexes and the coinage metal family group trends. , 2009, Journal of the American Chemical Society.

[16]  S. Nolan,et al.  N-heterocyclic carbenes in late transition metal catalysis. , 2009, Chemical reviews.

[17]  H. V. Rasika Dias,et al.  Gold(I) chloride coordinated 3-hexyne. , 2009, Inorganic chemistry.

[18]  F Dean Toste,et al.  Ligand effects in homogeneous Au catalysis. , 2008, Chemical reviews.

[19]  A. Arcadi Alternative synthetic methods through new developments in catalysis by gold. , 2008, Chemical reviews.

[20]  A. Echavarren,et al.  Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. , 2008, Chemical reviews.

[21]  Zigang Li,et al.  Gold-catalyzed organic transformations. , 2008, Chemical reviews.

[22]  N. Shapiro,et al.  Synthesis and structural characterization of isolable phosphine coinage metal π-complexes , 2008, Proceedings of the National Academy of Sciences.

[23]  T. Cundari,et al.  Synthesis and characterization of the gold(I) tris(ethylene) complex [Au(C2H4)3][SbF6]. , 2008, Angewandte Chemie.

[24]  A Stephen K Hashmi,et al.  Gold-catalyzed organic reactions. , 2007, Chemical reviews.

[25]  C. Che,et al.  Structure determination of homoleptic AuI, AgI, and CuI aryl/alkylethynyl coordination polymers by X-ray powder diffraction. , 2005, Chemistry.

[26]  Nianyong Zhu,et al.  Supramolecular Assembly of Luminescent Gold(I) Alkynylcalix[4]crown‐6 Complexes with Planar η2,η2‐Coordinated Gold(I) Centers , 2004 .

[27]  G. Frenking,et al.  Energy Partitioning Analysis of the Bonding in Ethylene and Acetylene Complexes of Group 6, 8, and 11 Metals: (CO)5TM−C2Hx and Cl4TM−C2Hx (TM = Cr, Mo, W), (CO)4TM−C2Hx (TM = Fe, Ru, Os), and TM+−C2Hx (TM = Cu, Ag, Au)†,§,⊥ , 2004 .

[28]  G. Frenking,et al.  Energy partitioning analysis of the bonding in L2TM-C2H2 and L2TM-C2H4 (TM = Ni, Pd, Pt; L2 = (PH3)2, (PMe3)2, H2PCH2PH2, H2P(CH2)2PH2) , 2003 .

[29]  F. Olbrich,et al.  Monomeric and Dimeric Cyclooctyne-Stabilized Complexes of Copper(I)1 , 2000 .

[30]  S. Saito,et al.  Recent advances in the transition-metal-catalyzed regioselective approaches to polysubstituted benzene derivatives. , 2000, Chemical reviews.

[31]  U. Behrens,et al.  Strong coordination of cycloheptynes by gold( I ) chloride: synthesis and structure of two complexes of the type [(alkyne)AuCl] , 1998 .

[32]  R. Gleiter,et al.  Trigonal-Planar-Coordinated Organogold(I) Complexes Stabilized by Organometallic 1,4-Diynes: Reaction Behavior, Structure, and Bonding† , 1997 .

[33]  L. Zsolnai,et al.  Unusual coordination mode of organogold(I) compounds: trigonal-planar complexation of gold (I) centers by alkynes , 1996 .

[34]  Gernot Frenking,et al.  Theoretical Studies of Organometallic Compounds. XIX. Complexes of Transition Metals in High and Low Oxidation States with Side-On-Bonded .pi.-Ligands , 1995 .

[35]  David J. Williams,et al.  A Gold(I) [2]Catene† , 1995 .

[36]  David J. Williams,et al.  Ein Gold(I)-[2]Catenan† , 1995 .

[37]  G. Frenking,et al.  Comparative Theoretical Study of Lewis Acid-Base Complexes of BH3, BF3, BCl3, AlCl3, and SO2 , 1994 .

[38]  G. Wittig,et al.  Reaktionen von Cyclooctin mit Übergangsmetall‐Derivaten , 1972 .

[39]  R. Hüttel,et al.  π‐ und ρ‐Komplexe aus Dimethylacetylen und Gold(III)‐chlorid als Vorstufen der Bildung von 3.4‐Dichlor‐tetramethyl‐cyclobuten , 1972 .