Catalytic applications of metal nanoparticles in imidazolium ionic liquids.

Metal nanoparticles (MNPs) with a small diameter and narrow size distribution can be prepared by H(2) reduction of metal compounds or decomposition of organometallic species dissolved in ionic liquids (ILs). MNPs dispersed in ILs are catalysts for reactions under multiphase conditions. These soluble MNPs possess a pronounced surfacelike rather than single-site like catalytic properties. In other cases the MNPs are not stable and tend to aggregate or serve as reservoirs of mononuclear catalytically active species.

[1]  Weize Wu,et al.  A Novel Method to Immobilize Ru Nanoparticles on SBA-15 Firmly by Ionic Liquid and Hydrogenation of Arene , 2005 .

[2]  A. Corma,et al.  Comparison between polyethylenglycol and imidazolium ionic liquids as solvents for developing a homogeneous and reusable palladium catalytic system for the Suzuki and Sonogashira coupling , 2005 .

[3]  J. Th. G. Overbeek,et al.  Theory of the stability of lyophobic colloids , 1955 .

[4]  X. Xue,et al.  Novel preparation method of Pt–Ru/C catalyst using imidazolium ionic liquid as solvent , 2005 .

[5]  D. Pozebon,et al.  On the use of phosphine-free PdCl2(SEt2)2 complex as catalyst precursor for the Heck reaction , 2001 .

[6]  Peter Wasserscheid,et al.  Ionische Flüssigkeiten - neue 'Lösungen' für die Übergangsmetallkatalyse , 2000 .

[7]  H. Gunaratne,et al.  Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-Valley fragrance {β-Lilial®; 3-(4-t-butylphenyl)-2-methylpropanal} , 2005 .

[8]  M. Eberlin,et al.  On the species involved in the vaporization of imidazolium ionic liquids in a steam-distillation-like process. , 2006, Angewandte Chemie.

[9]  J. Dupont,et al.  Kinetics and mechanistic aspects of the Heck reaction promoted by a CN-palladacycle. , 2005, Journal of the American Chemical Society.

[10]  R. Crabtree Iridium compounds in catalysis , 1979 .

[11]  F. Gozzo,et al.  Gaseous supramolecules of imidazolium ionic liquids: "magic" numbers and intrinsic strengths of hydrogen bonds. , 2004, Chemistry.

[12]  G. Fecher,et al.  Selective Hydrogenation of 1,3‐Butadiene to 1‐Butene by Pd(0) Nanoparticles Embedded in Imidazolium Ionic Liquids , 2005 .

[13]  J. Dupont,et al.  Synthesis and Characterization of Pt(0) Nanoparticles in Imidazolium Ionic Liquids , 2006 .

[14]  V. Smirnov,et al.  Interplays between Reactions within and without the Catalytic Cycle of the Heck Reaction as a Clue to the Optimization of the Synthetic Protocol , 2006 .

[15]  Weize Wu,et al.  Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid , 2003 .

[16]  J. D. de Vries,et al.  Homeopathic ligand-free palladium as a catalyst in the heck reaction. A comparison with a palladacycle. , 2003, Organic letters.

[17]  K. Cavell,et al.  Platinum-mediated oxidative addition and reductive elimination of imidazolium salts at C4 and C5. , 2005, Angewandte Chemie.

[18]  R. Finke,et al.  Nanocluster formation and stabilization fundamental studies: investigating "solvent-only" stabilization en route to discovering stabilization by the traditionally weakly coordinating anion BF4- plus high dielectric constant solvents. , 2006, Inorganic chemistry.

[19]  Zhaofu Fei,et al.  A strategy for the synthesis of transition-metal nanoparticles and their transfer between liquid phases. , 2006, Small.

[20]  G. Schmid Clusters and colloids: bridges between molecular and condensed material , 1990 .

[21]  J. Dupont,et al.  Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. , 2002, Journal of the American Chemical Society.

[22]  K. R. Seddon,et al.  Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by (2)H NMR. , 2005, Journal of the American Chemical Society.

[23]  D. Astruc,et al.  Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .

[24]  G. Fecher,et al.  Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. , 2006, Journal of colloid and interface science.

[25]  F. Endres,et al.  Nanoscale electrodeposition of germanium on Au(111) from an ionic liquid: an in situ STM study of phase formation , 2002 .

[26]  R. Finke,et al.  A mechanism for transition-metal nanoparticle self-assembly. , 2005, Journal of the American Chemical Society.

[27]  J. Dupont,et al.  On the kinetics of iridium nanoparticles formation in ionic liquids and olefin hydrogenation , 2006 .

[28]  M. Antonietti,et al.  Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. , 2004, Angewandte Chemie.

[29]  J. Dupont,et al.  The use of imidazolium ionic liquids for the formation and stabilization of ir0 and rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes. , 2003, Chemistry.

[30]  K. R. Seddon,et al.  The distillation and volatility of ionic liquids , 2006, Nature.

[31]  T. Hyeon,et al.  Facile Synthesis of Various Phosphine-Stabilized Monodisperse Palladium Nanoparticles through the Understanding of Coordination Chemistry of the Nanoparticles , 2004 .

[32]  J. Wadhawan,et al.  Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids , 2000 .

[33]  J. Dupont,et al.  C-H-pi interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures , 2000, Chemistry.

[34]  Y. Slovokhotov,et al.  Structures of large transition metal clusters , 2003 .

[35]  T. Müller,et al.  Formation of solvent cages around organometallic complexes in thin films of supported ionic liquid. , 2006, Journal of the American Chemical Society.

[36]  Uwe Schröder,et al.  Ionic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)64−/3− in droplet and thin layer deposits of 1-methyl-3-(2,6-(S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate , 2000 .

[37]  P. Wasserscheid Chemistry: Volatile times for ionic liquids , 2006, Nature.

[38]  J. Dupont,et al.  Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins , 2006 .

[39]  Peter Licence,et al.  Ionic liquids in vacuo; solution-phase X-ray photoelectron spectroscopy. , 2005, Chemical communications.

[40]  J. Dupont,et al.  The role of Pd nanoparticles in ionic liquid in the Heck reaction. , 2005, Journal of the American Chemical Society.

[41]  T. Welton Ionic liquids in catalysis , 2004 .

[42]  A. Nacci,et al.  Pd Nanoparticle Catalyzed Heck Arylation of 1,1-Disubstituted Alkenes in Ionic Liquids. Study on Factors Affecting the Regioselectivity of the Coupling Process , 2003 .

[43]  S. Miao,et al.  Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene. , 2005, Angewandte Chemie.

[44]  James H. Davis Task-Specific Ionic Liquids , 2004 .

[45]  B. Korgel,et al.  Iridium nanocrystal synthesis and surface coating-dependent catalytic activity. , 2005, Nano letters.

[46]  Henri Patin,et al.  Reduced transition metal colloids: a novel family of reusable catalysts? , 2002, Chemical reviews.

[47]  Zi‐Chen Li,et al.  Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation. , 2005, Journal of the American Chemical Society.

[48]  R. Finke,et al.  Nanocluster Nucleation, Growth, and Then Agglomeration Kinetic and Mechanistic Studies: A More General, Four-Step Mechanism Involving Double Autocatalysis , 2005 .

[49]  R. Scopelliti,et al.  Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. , 2004, Journal of the American Chemical Society.

[50]  Bernd M. Smarsly,et al.  Ionische Flüssigkeiten für die Synthese funktioneller Nanopartikel und anderer anorganischer Nanostrukturen , 2004 .

[51]  J. Dupont,et al.  Chloropalladated propargyl amine: a highly efficient phosphine-free catalyst precursor for the Heck reaction. , 2003, Organic letters.

[52]  K. Seddon,et al.  Influence of chloride, water, and organic solvents on the physical properties of ionic liquids , 2000 .

[53]  L. Rossi,et al.  The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. , 2004, Chemistry.

[54]  Weize Wu,et al.  Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. , 2004, Angewandte Chemie.

[55]  J. Dupont,et al.  On the noninnocent nature of 1,3-dialkylimidazolium ionic liquids. , 2004, Angewandte Chemie.

[56]  A. Nacci,et al.  Regio- and stereo-selective carbon–carbon bond formation in ionic liquids , 2004 .

[57]  J. Widegren,et al.  A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts , 2003 .

[58]  J. Dupont,et al.  A Simple and Practical Method for the Preparation and Purity Determination of Halide‐Free Imidazolium Ionic Liquids , 2006 .

[59]  Chen Zhao,et al.  One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst. , 2006, Journal of the American Chemical Society.

[60]  H. Bönnemann,et al.  Nanoscopic Metal Particles − Synthetic Methods and Potential Applications , 2001 .

[61]  A. Alimardanov,et al.  Use of "Homeopathic" Ligand-Free Palladium as Catalyst for Aryl-Aryl Coupling Reactions , 2004 .

[62]  L. Rossi,et al.  Ruthenium dioxide nanoparticles in ionic liquids: synthesis, characterization and catalytic properties in hydrogenation of olefins and arenes , 2004 .

[63]  F. Hénin,et al.  Palladium nanoparticles obtained from palladium salts and tributylamine in molten tetrabutylammonium bromide: their use for hydrogenolysis-free hydrogenation of olefins , 2004 .

[64]  J. Dupont,et al.  Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. , 2003, Inorganic chemistry.

[65]  R. Scopelliti,et al.  Synthesis and characterization of ionic liquids incorporating the nitrile functionality. , 2004, Inorganic chemistry.

[66]  M. Reetz,et al.  Ligand-free Heck reactions using low Pd-loading. , 2004, Chemical communications.

[67]  N. Cioffi,et al.  Pd nanoparticles catalyzed stereospecific synthesis of beta-aryl cinnamic esters in ionic liquids. , 2003, The Journal of organic chemistry.

[68]  Jairton Dupont,et al.  1,3‐Dialkylimidazoliumsalze: Ionische Flüssigkeiten, aber keine “unschuldigen” Solventien , 2004 .

[69]  P. Suarez,et al.  Physico-chemical processes in imidazolium ionic liquids. , 2006, Physical chemistry chemical physics : PCCP.

[70]  J. Horiuti A METHOD OF STATISTICAL MECHANICAL TREATMENT OF EQUILIBRIUM AND CHEMICAL REACTIONS. , 1948 .

[71]  J. Dupont,et al.  Competitive Hydrogenation of Alkyl‐Substituted Arenes by Transition‐Metal Nanoparticles: Correlation with the Alkyl‐Steric Effect , 2005 .

[72]  P. Dyson,et al.  Biphasic hydrosilylation in ionic liquids: a process set for industrial implementation. , 2006, Journal of the American Chemical Society.

[73]  S. Ozkar,et al.  Nanocluster formation and stabilization fundamental studies: ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria. , 2002, Journal of the American Chemical Society.

[74]  L. Rossi,et al.  On the Use of Ruthenium Dioxide in 1-n-Butyl-3-Methylimidazolium Ionic Liquids as Catalyst Precursor for Hydrogenation Reactions , 2004 .

[75]  Jairton Dupont,et al.  Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. , 2005, The journal of physical chemistry. B.

[76]  P. Suarez,et al.  Ionic liquid (molten salt) phase organometallic catalysis. , 2002, Chemical reviews.

[77]  R. Finke,et al.  A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis , 1999 .

[78]  D. Enders,et al.  New N-heterocyclic carbene palladium complex/ionic liquid matrix immobilized on silica: application as recoverable catalyst for the Heck reaction. , 2006, Organic letters.

[79]  Y. Kou,et al.  A General Method for Preparation of PVP-Stabilized Noble Metal Nanoparticles in Room Temperature Ionic Liquids , 2004 .

[80]  J. Dupont On the solid, liquid and solution structural organization of imidazolium ionic liquids , 2004 .

[81]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[82]  A. Nacci,et al.  Pd nanoparticles as efficient catalysts for Suzuki and Stille coupling reactions of aryl halides in ionic liquids. , 2005, The Journal of organic chemistry.

[83]  A. Roucoux,et al.  Arene Hydrogenation with a Stabilised Aqueous Rhodium(0) Suspension: A Major Effect of the Surfactant Counter‐Anion , 2003 .

[84]  T. Welton,et al.  Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst , 1999 .

[85]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[86]  J. Pellegatta,et al.  Pd colloid-catalyzed methoxycarbonylation of iodobenzene in ionic liquids , 2004 .

[87]  L. Sabbatini,et al.  Heck Reaction Catalyzed by Nanosized Palladium on Chitosan in Ionic Liquids , 2004 .

[88]  Jairton Dupont,et al.  Laser-induced fragmentation of transition metal nanoparticles in ionic liquids. , 2005, Journal of the American Chemical Society.

[89]  Zhaofu Fei,et al.  Remarkable Anion and Cation Effects on Stille Reactions in Functionalised Ionic Liquids , 2006 .