Review of surrogate modeling in water resources

[1] Surrogate modeling, also called metamodeling, has evolved and been extensively used over the past decades. A wide variety of methods and tools have been introduced for surrogate modeling aiming to develop and utilize computationally more efficient surrogates of high-fidelity models mostly in optimization frameworks. This paper reviews, analyzes, and categorizes research efforts on surrogate modeling and applications with an emphasis on the research accomplished in the water resources field. The review analyzes 48 references on surrogate modeling arising from water resources and also screens out more than 100 references from the broader research community. Two broad families of surrogates namely response surface surrogates, which are statistical or empirical data-driven models emulating the high-fidelity model responses, and lower-fidelity physically based surrogates, which are simplified models of the original system, are detailed in this paper. Taxonomies on surrogate modeling frameworks, practical details, advances, challenges, and limitations are outlined. Important observations and some guidance for surrogate modeling decisions are provided along with a list of important future research directions that would benefit the common sampling and search (optimization) analyses found in water resources.

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  Qing Li,et al.  A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials , 2010 .

[3]  Andrea Castelletti,et al.  Emulation techniques for the reduction and sensitivity analysis of complex environmental models , 2012, Environ. Model. Softw..

[4]  Ryszard S. Michalski,et al.  LEARNABLE EVOLUTION MODEL: Evolutionary Processes Guided by Machine Learning , 2004, Machine Learning.

[5]  Tor Arne Johansen,et al.  Real-Time Production Optimization of Oil and Gas Production Systems: A Technology Survey , 2007 .

[6]  J.W. Bandler,et al.  Space mapping: the state of the art , 2004, IEEE Transactions on Microwave Theory and Techniques.

[7]  Stefano Tarantola,et al.  Sensitivity Analysis as an Ingredient of Modeling , 2000 .

[8]  William W.-G. Yeh,et al.  Groundwater Management Using Model Reduction via Empirical Orthogonal Functions , 2008 .

[9]  Emanuele Borgonovo,et al.  Model emulation and moment-independent sensitivity analysis: An application to environmental modelling , 2012, Environ. Model. Softw..

[10]  Wei-Chen Cheng,et al.  A real‐time groundwater management model using data assimilation , 2009 .

[11]  G. Gary Wang,et al.  Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions , 2010 .

[12]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[13]  Yalchin Efendiev,et al.  An efficient two‐stage Markov chain Monte Carlo method for dynamic data integration , 2005 .

[14]  M. Zako,et al.  Structural optimization using Kriging approximation , 2003 .

[15]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[16]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[17]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .

[18]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[19]  Stefan M. Wild,et al.  Bayesian Calibration and Uncertainty Analysis for Computationally Expensive Models Using Optimization and Radial Basis Function Approximation , 2008 .

[20]  Ben Chie Yen,et al.  A reliability estimation in modeling watershed runoff with uncertainties , 1990 .

[21]  Sanjay B. Joshi,et al.  Metamodeling: Radial basis functions, versus polynomials , 2002, Eur. J. Oper. Res..

[22]  Russell R. Barton,et al.  A review on design, modeling and applications of computer experiments , 2006 .

[23]  Andy J. Keane,et al.  On the Design of Optimization Strategies Based on Global Response Surface Approximation Models , 2005, J. Glob. Optim..

[24]  Achille Messac,et al.  Metamodeling using extended radial basis functions: a comparative approach , 2006, Engineering with Computers.

[25]  John W. Bandler,et al.  Editorial—surrogate modeling and space mapping for engineering optimization , 2008 .

[26]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[27]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[28]  Christine A. Shoemaker,et al.  Comparison of function approximation, heuristic, and derivative‐based methods for automatic calibration of computationally expensive groundwater bioremediation models , 2005 .

[29]  Peter C. Young,et al.  State Dependent Parameter metamodelling and sensitivity analysis , 2007, Comput. Phys. Commun..

[30]  Francesca Pianosi,et al.  Real‐time management of a multipurpose water reservoir with a heteroscedastic inflow model , 2009 .

[31]  Kwok-Wo Wong,et al.  Generalized RLS approach to the training of neural networks , 2006, IEEE Trans. Neural Networks.

[32]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[33]  D. Ginsbourger,et al.  Kriging is well-suited to parallelize optimization , 2010 .

[34]  K. P. Sudheer,et al.  Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions , 2010, Environ. Model. Softw..

[35]  Micha Werner,et al.  Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling , 2003 .

[36]  Timothy W. Simpson,et al.  Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not , 2008 .

[37]  Christine A. Shoemaker,et al.  Parallel Stochastic Global Optimization Using Radial Basis Functions , 2009, INFORMS J. Comput..

[38]  Dimitri N. Mavris,et al.  An enhancement of constraint feasibility in BPN based approximate optimization , 2007 .

[39]  Anthony O'Hagan,et al.  Diagnostics for Gaussian Process Emulators , 2009, Technometrics.

[40]  Arnold W. Heemink,et al.  Model inversion of transient nonlinear groundwater flow models using model reduction , 2006 .

[41]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[42]  Theresa Dawn Robinson,et al.  Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping , 2008 .

[43]  K. Choi,et al.  Efficient Response Surface Modeling by Using Moving Least-Squares Method and Sensitivity , 2005 .

[44]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[45]  Douglas Allaire,et al.  Uncertainty assessment of complex models with application to aviation environmental systems , 2009 .

[46]  Christine A. Shoemaker,et al.  Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.

[47]  A. O'Hagan,et al.  Bayesian emulation of complex multi-output and dynamic computer models , 2010 .

[48]  Shigeru Obayashi,et al.  Efficient global optimization (EGO) for multi-objective problem and data mining , 2005, 2005 IEEE Congress on Evolutionary Computation.

[49]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[50]  John W. Bandler,et al.  Editorial—Surrogate Modelling and Space Mapping for Engineering Optimization , 2001 .

[51]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[52]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[53]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[54]  I-Fan Chang,et al.  Support vector regression for real-time flood stage forecasting , 2006 .

[55]  Manolis Papadrakakis,et al.  Structural optimization using evolution strategies and neural networks , 1998 .

[56]  Dirk Gorissen,et al.  HETEROGENEOUS EVOLUTION OF SURROGATE MODELS , 2007 .

[57]  Holger R. Maier,et al.  Relationship between problem characteristics and the optimal number of genetic algorithm generations , 2011 .

[58]  Godfrey A. Walters,et al.  LEMMO: Hybridising Rule Induction and NSGAII for Multi-Objective Water Systems Design , 2005 .

[59]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[60]  Q. Kang,et al.  Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality , 2010 .

[61]  Domenico Baù,et al.  Stochastic management of pump-and-treat strategies using surrogate functions , 2006 .

[62]  Mitchell J. Small,et al.  Evaluating response surface designs for uncertainty analysis and prescriptive applications of a large-scale water quality model , 2006 .

[63]  Kourosh Behzadian,et al.  Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks , 2009, Environ. Model. Softw..

[64]  Oskar von Stryk,et al.  A mixed-integer simulation-based optimization approach with surrogate functions in water resources management , 2008 .

[65]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[66]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[67]  Yuedong Wang Smoothing Spline ANOVA , 2011 .

[68]  Victor Picheny,et al.  Using Cross Validation to Design Conservative Surrogates , 2010 .

[69]  Rui Zou,et al.  An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling , 2007 .

[70]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[71]  N. M. J. Crout,et al.  Is my model too complex? Evaluating model formulation using model reduction , 2009, Environ. Model. Softw..

[72]  Henry P. Wynn,et al.  Screening, predicting, and computer experiments , 1992 .

[73]  Wolfgang Ponweiser,et al.  Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted -Metric Selection , 2008, PPSN.

[74]  Dimitri Solomatine,et al.  A novel approach to parameter uncertainty analysis of hydrological models using neural networks , 2009 .

[75]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[76]  Dong-Hoon Choi,et al.  Kriging interpolation methods in geostatistics and DACE model , 2002 .

[77]  Raghavan Srinivasan,et al.  Approximating SWAT Model Using Artificial Neural Network and Support Vector Machine 1 , 2009 .

[78]  R. Lewis,et al.  An Overview of First-Order Model Management for Engineering Optimization , 2001 .

[79]  Weng Tat Chan,et al.  Derivation of Pareto front with genetic algorithm and neural network , 2001 .

[80]  Weiyu Liu,et al.  Development of gradient-enhanced kriging approximations for multidisciplinary design optimization , 2003 .

[81]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[82]  D. A. Barry,et al.  The first‐order reliability method of predicting cumulative mass flux in heterogeneous porous formations , 1997 .

[83]  A. Antoulas,et al.  A comparative study of 7 algorithms for model reduction , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[84]  G. G. Wang,et al.  Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .

[85]  Joaquim R. R. A. Martins,et al.  Variable-complexity optimization applied to airfoil design , 2007 .

[86]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[87]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[88]  Martin T. Hagan,et al.  Comparison of Stochastic Global Optimization Methods to Estimate Neural Network Weights , 2007, Neural Processing Letters.

[89]  J. Antenucci,et al.  A multiobjective response surface approach for improved water quality planning in lakes and reservoirs , 2010 .

[90]  Holger R. Maier,et al.  Optimal operation of complex water distribution systems using metamodels. , 2010 .

[91]  Avi Ostfeld,et al.  Efficient Hydraulic State Estimation Technique Using Reduced Models of Urban Water Networks , 2011 .

[92]  Hsien-Chie Cheng,et al.  Assessing a Response Surface-Based Optimization Approach for Soil Vapor Extraction System Design , 2009 .

[93]  Jongsoo Lee,et al.  An improvement of Kriging based sequential approximate optimization method via extended use of design of experiments , 2010 .

[94]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[95]  R. Peralta,et al.  Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems , 1999 .

[96]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[97]  Jon C. Helton,et al.  Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..

[98]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[99]  Fred van Keulen,et al.  Gradient-enhanced response surface building , 2002 .

[100]  Barbara S. Minsker,et al.  Applying Dynamic Surrogate Models in Noisy Genetic Algorithms to Optimize Groundwater Remediation Designs , 2011 .

[101]  C. Shoemaker,et al.  Assessing the impacts of parameter uncertainty for computationally expensive groundwater models , 2006 .

[102]  Brian J Reich,et al.  Surface Estimation, Variable Selection, and the Nonparametric Oracle Property. , 2011, Statistica Sinica.

[103]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[104]  R. A. Miller,et al.  Sequential kriging optimization using multiple-fidelity evaluations , 2006 .

[105]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[106]  H. Madsen,et al.  A fast Evolutionary-based Meta-Modelling Approach for the Calibration of a Rainfall-Runoff Model , 2004 .

[107]  Bryan A. Tolson,et al.  Numerical assessment of metamodelling strategies in computationally intensive optimization , 2012, Environ. Model. Softw..

[108]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[109]  Arnold Heemink,et al.  Reduced models for linear groundwater flow models using empirical orthogonal functions , 2004 .

[110]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[111]  Shapour Azarm,et al.  A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization , 2008 .

[112]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[113]  Q. J. Wang THE GENETIC ALGORITHM AND ITS APPLICAYTION TO CALIBRATING CONCEPUTAL RAINFALL-RUNOFF MODELS , 1991 .

[114]  Pascal Neveu,et al.  Bayesian nonlinear model selection and neural networks: a conjugate prior approach , 2000, IEEE Trans. Neural Networks Learn. Syst..

[115]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[116]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[117]  P. Nair,et al.  Reduced‐order modeling of parameterized PDEs using time–space‐parameter principal component analysis , 2009 .

[118]  Thomas E. Fricker,et al.  Multivariate Emulators with Nonseparable Covariance Structures , 2010 .

[119]  Bryan A. Tolson,et al.  A New Formulation for Feedforward Neural Networks , 2011, IEEE Transactions on Neural Networks.

[120]  Holger R. Maier,et al.  Water Distribution System Optimization Using Metamodels , 2005 .

[121]  Ilya M. Sobol,et al.  Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..

[122]  Wolfgang Ponweiser,et al.  On Expected-Improvement Criteria for Model-based Multi-objective Optimization , 2010, PPSN.

[123]  M. Sasena,et al.  Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization , 2002 .

[124]  Rui Zou,et al.  Multiple-pattern parameter identification and uncertainty analysis approach for water quality modeling , 2009 .

[125]  Andy J. Keane,et al.  Statistical Improvement Criteria for Use in Multiobjective Design Optimization , 2006 .

[126]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[127]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[128]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[129]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[130]  John W. Bandler,et al.  Space mapping technique for electromagnetic optimization , 1994 .

[131]  George Kourakos,et al.  Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models , 2009 .

[132]  G. Hornberger,et al.  Approach to the preliminary analysis of environmental systems , 1981 .

[133]  E. Reichard Groundwater–Surface Water Management With Stochastic Surface Water Supplies: A Simulation Optimization Approach , 1995 .

[134]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[135]  Hirotaka Nakayama,et al.  Simulation-Based Optimization Using Computational Intelligence , 2002 .

[136]  Dragan Savic,et al.  Genetic Algorithms for Least-Cost Design of Water Distribution Networks , 1997 .

[137]  Martin F. Lambert,et al.  Bayesian training of artificial neural networks used for water resources modeling , 2005 .

[138]  Dianne T. Bautista A sequential design for approximating the Pareto front using the expected Pareto improvement function , 2009 .

[139]  David E. Goldberg,et al.  Simplifying multiobjective optimization: An automated design methodology for the nondominated sorted genetic algorithm‐II , 2003 .

[140]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[141]  Virginia M. Johnson,et al.  Accuracy of Neural Network Approximators in Simulation-Optimization , 2000 .

[142]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[143]  R. Grandhi,et al.  A global structural optimization technique using an interval method , 2001 .

[144]  G. G. Wang,et al.  Mode-pursuing sampling method for global optimization on expensive black-box functions , 2004 .

[145]  Barbara S. Minsker,et al.  Optimal groundwater remediation design using an Adaptive Neural Network Genetic Algorithm , 2006 .

[146]  G. Wahba Spline models for observational data , 1990 .

[147]  T. Santner,et al.  Computer experiments: multiobjective optimization and sensitivity analysis , 2011 .

[148]  Shin'ichi Tamura,et al.  Capabilities of a four-layered feedforward neural network: four layers versus three , 1997, IEEE Trans. Neural Networks.

[149]  Chong Gu Smoothing Spline Anova Models , 2002 .

[150]  John W. Bandler,et al.  An aggressive approach to parameter extraction , 1999, IMS 1999.

[151]  Yalchin Efendiev,et al.  Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods , 2010 .

[152]  Tong Heng Lee,et al.  Geometrical interpretation and architecture selection of MLP , 2005, IEEE Transactions on Neural Networks.

[153]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[154]  A. Saltelli,et al.  Sensitivity Anaysis as an Ingredient of Modeling , 2000 .

[155]  M. Ratto,et al.  Using recursive algorithms for the efficient identification of smoothing spline ANOVA models , 2010 .

[156]  G. G. Wang,et al.  Metamodeling for High Dimensional Simulation-Based Design Problems , 2010 .

[157]  John W. Bandler,et al.  Fully automated space mapping optimization of 3D structures , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[158]  Valder Steffen,et al.  Optimization of aircraft structural components by using nature-inspired algorithms and multi-fidelity approximations , 2009, J. Glob. Optim..

[159]  Robert Haimes,et al.  Multifidelity Optimization for Variable-Complexity Design , 2006 .

[160]  Avi Ostfeld,et al.  A hybrid genetic—instance based learning algorithm for CE-QUAL-W2 calibration , 2005 .

[161]  F. van Keulen,et al.  Gradient-enhanced response surface building , 2004 .

[162]  Alexandre Megretski,et al.  Fourier Series for Accurate, Stable, Reduced-Order Models in Large-Scale Linear Applications , 2005, SIAM J. Sci. Comput..

[163]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[164]  Randal J. Barnes,et al.  Infill sampling criteria to locate extremes , 1995 .

[165]  G. G. Wang,et al.  Space exploration and global optimization for computationally intensive design problems: a rough set based approach , 2004 .

[166]  Andy J. Keane,et al.  A Knowledge-Based Approach To Response Surface Modelling in Multifidelity Optimization , 2003, J. Glob. Optim..

[167]  Peter C. Young,et al.  A unified approach to environmental systems modeling , 2009 .

[168]  Bithin Datta,et al.  Coupled simulation‐optimization model for coastal aquifer management using genetic programming‐based ensemble surrogate models and multiple‐realization optimization , 2011 .

[169]  Farrokh Mistree,et al.  Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size , 1999 .

[170]  Adam J. Siade,et al.  Snapshot selection for groundwater model reduction using proper orthogonal decomposition , 2010 .

[171]  Jacques de Villiers,et al.  Backpropagation neural nets with one and two hidden layers , 1993, IEEE Trans. Neural Networks.

[172]  Christine A. Shoemaker,et al.  A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions , 2007, INFORMS J. Comput..

[173]  William J. Welch,et al.  Computer experiments and global optimization , 1997 .

[174]  Ken R. McNaught,et al.  A comparison of experimental designs in the development of a neural network simulation metamodel , 2004, Simul. Model. Pract. Theory.

[175]  Kay Chen Tan,et al.  Estimating the Number of Hidden Neurons in a Feedforward Network Using the Singular Value Decomposition , 2006, IEEE Trans. Neural Networks.

[176]  Andy J. Keane,et al.  Optimization using surrogate models and partially converged computational fluid dynamics simulations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[177]  Mitchell J. Small,et al.  State Water Pollution Control Policy Insights from a Reduced-Form Model , 2004 .

[178]  Holger R. Maier,et al.  Bayesian model selection applied to artificial neural networks used for water resources modeling , 2008 .

[179]  Raphael T. Haftka,et al.  Multi-fidelity design of stiffened composite panel with a crack , 2002 .

[180]  Tiangang Cui,et al.  Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm , 2011 .

[181]  Jacob K. White,et al.  Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations , 2006 .

[182]  Arnold W. Heemink,et al.  Inverse modeling of groundwater flow using model reduction , 2005 .

[183]  Shawn E. Gano,et al.  Update strategies for kriging models used in variable fidelity optimization , 2006 .

[184]  Elad Salomons,et al.  Optimal Real-Time Operation of Urban Water Distribution Systems Using Reduced Models , 2008 .

[185]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[186]  Robert Haimes,et al.  Strategies for Multifidelity Optimization with Variable-Dimensional Hierarchical Models , 2006 .

[187]  Robert W. Blanning,et al.  The construction and implementation of metamodels , 1975 .

[188]  D. McKinney,et al.  Genetic algorithm solution of groundwater management models , 1994 .

[189]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[190]  Mikael A. Langthjem,et al.  Multifidelity Response Surface Approximations for the Optimum Design of Diffuser Flows , 2001 .

[191]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[192]  Luigi Berardi,et al.  Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms , 2009, Environ. Model. Softw..

[193]  Qingfu Zhang,et al.  Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model , 2010, IEEE Transactions on Evolutionary Computation.

[194]  Victor Picheny,et al.  Conservative Predictions Using Surrogate Modeling , 2008 .

[195]  Christine A. Shoemaker,et al.  Improved Strategies for Radial basis Function Methods for Global Optimization , 2007, J. Glob. Optim..