The natverse: a versatile computational toolbox to combine and analyse neuroanatomical data

To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation, clustering and graph theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison of morphology and connectivity across many neurons after imaging or co-registration within a common space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community.

[1]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[2]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[3]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[4]  Giorgio A. Ascoli,et al.  Doubling up on the Fly: NeuroMorpho.Org Meets Big Data , 2014, Neuroinformatics.

[5]  Philipp Schlegel,et al.  Learning from connectomics on the fly. , 2017, Current opinion in insect science.

[6]  E Meijering,et al.  Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images , 2004, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[7]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[8]  Louis K. Scheffer,et al.  A resource for the Drosophila antennal lobe provided by the connectome of glomerulus VA1v , 2018, eLife.

[9]  Chet C. Sherwood,et al.  Neuronal morphology in the African elephant (Loxodonta africana) neocortex , 2010, Brain Structure and Function.

[10]  Feng Li,et al.  Automated Reconstruction of a Serial-Section EM Drosophila Brain with Flood-Filling Networks and Local Realignment , 2019 .

[11]  Charless C. Fowlkes,et al.  Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping , 2015, Nature Protocols.

[12]  Joshua Kaplan,et al.  Neurolucida Lucivid versus Neurolucida camera: A quantitative and qualitative comparison of three-dimensional neuronal reconstructions , 2010, Journal of Neuroscience Methods.

[13]  L. Niels Cornelisse,et al.  Automated analysis of neuronal morphology, synapse number and synaptic recruitment , 2011, Journal of Neuroscience Methods.

[14]  Torsten Rohlfing,et al.  Standardized atlas of the brain of the desert locust, Schistocerca gregaria , 2008, Cell and Tissue Research.

[15]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[16]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[17]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[18]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[19]  O. Sporns,et al.  Connectomics-Based Analysis of Information Flow in the Drosophila Brain , 2015, Current Biology.

[20]  M. Pool,et al.  NeuriteTracer: A novel ImageJ plugin for automated quantification of neurite outgrowth , 2008, Journal of Neuroscience Methods.

[21]  Gregory S.X.E. Jefferis,et al.  NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases , 2016, Neuron.

[22]  Stephan Saalfeld,et al.  Synaptic Cleft Segmentation in Non-Isotropic Volume Electron Microscopy of the Complete Drosophila Brain , 2018, MICCAI.

[23]  Gregory S.X.E. Jefferis,et al.  Neural circuit basis of aversive odour processing in Drosophila from sensory input to descending output , 2018 .

[24]  Gregory S.X.E. Jefferis,et al.  A Bidirectional Circuit Switch Reroutes Pheromone Signals in Male and Female Brains , 2013, Cell.

[25]  H. Mustaparta,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[26]  Duncan Murdoch RGL: An R Interface to OpenGL , 2001 .

[27]  Eugene W. Myers,et al.  BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies , 2015, Neuroinformatics.

[28]  Chet C. Sherwood,et al.  Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris) , 2016, Brain, Behavior and Evolution.

[29]  Douglas B. Ehlenberger,et al.  New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales , 2005, Neuroscience.

[30]  Giovanni Pioggia,et al.  NEuronMOrphological analysis tool: open-source software for quantitative morphometrics , 2013, Front. Neuroinform..

[31]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[32]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[33]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[34]  Shinn-Ying Ho,et al.  NeurphologyJ: An automatic neuronal morphology quantification method and its application in pharmacological discovery , 2011, BMC Bioinformatics.

[35]  Johannes E. Schindelin,et al.  Identifying Neuronal Lineages of Drosophila by Sequence Analysis of Axon Tracts , 2010, The Journal of Neuroscience.

[36]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[37]  D. Chklovskii,et al.  Neurogeometry and potential synaptic connectivity , 2005, Trends in Neurosciences.

[38]  Torsten Rohlfing,et al.  Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees , 2003, IEEE Transactions on Information Technology in Biomedicine.

[39]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[40]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[41]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[42]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[43]  Jan Clemens,et al.  Discovery of a New Song Mode in Drosophila Reveals Hidden Structure in the Sensory and Neural Drivers of Behavior , 2018, Current Biology.

[44]  James M. Jeanne,et al.  The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons , 2018, Neuron.

[45]  Michael B. Reiser,et al.  Mapping the Neural Substrates of Behavior , 2017, Cell.

[46]  Konrad Paul Kording,et al.  Quantifying How Staining Methods Bias Measurements of Neuron Morphologies , 2019, Front. Neuroinform..

[47]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[48]  Gerald M. Rubin,et al.  Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog , 2018, The Journal of comparative neurology.

[49]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[50]  Cyrille C. Girardin,et al.  Connecting Neural Codes with Behavior in the Auditory System of Drosophila , 2015, Neuron.

[51]  Yi Wang,et al.  Whole-animal connectomes of both Caenorhabditis elegans sexes , 2019, Nature.

[52]  Stanley Heinze,et al.  Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths , 2017, Front. Behav. Neurosci..

[53]  Pedro F. Jacob,et al.  Integration of Parallel Opposing Memories Underlies Memory Extinction , 2018, Cell.

[54]  Giorgio A. Ascoli,et al.  A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks , 2007, Neuroinformatics.

[55]  E M Glaser,et al.  Neuron imaging with Neurolucida--a PC-based system for image combining microscopy. , 1990, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[56]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[57]  Gregory S.X.E. Jefferis,et al.  Functional and Anatomical Specificity in a Higher Olfactory Centre , 2018 .

[58]  William F Tobin,et al.  Wiring variations that enable and constrain neural computation in a sensory microcircuit , 2017, bioRxiv.

[59]  Louis K. Scheffer,et al.  Synaptic circuits and their variations within different columns in the visual system of Drosophila , 2015, Proceedings of the National Academy of Sciences.

[60]  Yoshinori Aso,et al.  Dopaminergic neurons write and update memories with cell-type-specific rules , 2016, eLife.

[61]  Yoshinori Aso,et al.  Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila , 2018, Nature Communications.

[62]  Patrick R Hof,et al.  Neocortical neuronal morphology in the newborn giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana) , 2016, The Journal of comparative neurology.

[63]  Volker Hartenstein,et al.  Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. , 2013, Developmental biology.

[64]  Slawomir J. Nasuto,et al.  Neuromantic – from Semi-Manual to Semi-Automatic Reconstruction of Neuron Morphology , 2012, Front. Neuroinform..

[65]  Tarn Duong,et al.  ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R , 2007 .

[66]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[67]  Guido Gerig,et al.  Morphometry of anatomical shape complexes with dense deformations and sparse parameters , 2014, NeuroImage.

[68]  Andrew M Dacks,et al.  Phylogeny of a serotonin‐immunoreactive neuron in the primary olfactory center of the insect brain , 2006, The Journal of comparative neurology.

[69]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[70]  Louis K. Scheffer,et al.  A connectome of a learning and memory center in the adult Drosophila brain , 2017, eLife.

[71]  Ws. Rasband ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA , 2011 .

[72]  R. Menzel,et al.  Three‐dimensional average‐shape atlas of the honeybee brain and its applications , 2005, The Journal of comparative neurology.

[73]  G. Jefferis,et al.  An olfactory receptor for food-derived odours promotes male courtship in Drosophila , 2011, Nature.

[74]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[75]  Chandan Singh,et al.  Large Scale Image Segmentation with Structured Loss Based Deep Learning for Connectome Reconstruction , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Giorgio A. Ascoli,et al.  Weighing the Evidence in Peters’ Rule: Does Neuronal Morphology Predict Connectivity? , 2017, Trends in Neurosciences.

[77]  Gregory S.X.E. Jefferis,et al.  Memory retrieval recruits both innate and learned olfactory processing centres in Drosophila , 2017, bioRxiv.

[78]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[79]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[80]  Zhiyuan Lu,et al.  The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling , 2016, eLife.

[81]  Ben Sutcliffe,et al.  Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body , 2019, eLife.

[82]  Michael T. Mader,et al.  The Drosophila Standard Brain , 2002, Current Biology.

[83]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[84]  Ignacio Arganda-Carreras,et al.  Group-wise 3D registration based templates to study the evolution of ant worker neuroanatomy , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[85]  Nicolas Y. Masse,et al.  A Mutual Information Approach to Automate Identification of Neuronal Clusters in Drosophila Brain Images , 2012, Front. Neuroinform..

[86]  Kei Ito,et al.  Systematic Analysis of Neural Projections Reveals Clonal Composition of the Drosophila Brain , 2013, Current Biology.

[87]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[88]  Hanchuan Peng,et al.  Extensible visualization and analysis for multidimensional images using Vaa3D , 2014, Nature Protocols.

[89]  Ting Zhao,et al.  Automatic Neuron Type Identification by Neurite Localization in the Drosophila Medulla , 2014, ArXiv.

[90]  Sen Song,et al.  A genetic and computational approach to structurally classify neuronal types , 2014, Nature Communications.

[91]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[92]  B. Dickson,et al.  Genome-scale functional characterization of Drosophila developmental enhancers in vivo , 2014, Nature.

[93]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[94]  Charles R. Gerfen,et al.  Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain , 2019, Cell.

[95]  Kwang-Min Kim,et al.  Neuron Image Analyzer: Automated and Accurate Extraction of Neuronal Data from Low Quality Images , 2015, Scientific Reports.

[96]  Michael H. Dickinson,et al.  The functional organization of descending sensory-motor pathways in Drosophila , 2017 .

[97]  G. Jefferis,et al.  Neuronal cell types in the fly: single-cell anatomy meets single-cell genomics , 2019, Current Opinion in Neurobiology.

[98]  J. Douglas Armstrong,et al.  Bioinformatics Applications Note Systems Biology Simple Neurite Tracer: Open Source Software for Reconstruction, Visualization and Analysis of Neuronal Processes , 2022 .

[99]  Stanley Heinze,et al.  Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain , 2012, The Journal of comparative neurology.

[100]  B. Jacobs,et al.  Life‐span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative golgi study , 1997, The Journal of comparative neurology.

[101]  Haley R Pipkins,et al.  Polyamine transporter potABCD is required for virulence of encapsulated but not nonencapsulated Streptococcus pneumoniae , 2017, PloS one.

[102]  H. Otsuna,et al.  Color depth MIP mask search: a new tool to expedite Split-GAL4 creation , 2018, bioRxiv.

[103]  A. Possolo,et al.  R Implementation of a Polyhedral Approximation to a 3D Set of Points Using the α-Shape , 2014 .

[104]  Jai Y. Yu,et al.  Cellular Organization of the Neural Circuit that Drives Drosophila Courtship Behavior , 2010, Current Biology.

[105]  James M. Jeanne,et al.  Convergence, Divergence, and Reconvergence in a Feedforward Network Improves Neural Speed and Accuracy , 2015, Neuron.

[106]  Giorgio A. Ascoli,et al.  NeuroMorpho.Org Implementation of Digital Neuroscience: Dense Coverage and Integration with the NIF , 2008, Neuroinformatics.

[107]  Bob Jacobs,et al.  Regional Dendritic Variation in Neonatal Human Cortex: A Quantitative Golgi Study , 2005, Developmental Neuroscience.

[108]  Kei Ito,et al.  Organization of antennal lobe‐associated neurons in adult Drosophila melanogaster brain , 2012, The Journal of comparative neurology.

[109]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[110]  Stephan Saalfeld,et al.  Globally optimal stitching of tiled 3D microscopic image acquisitions , 2009, Bioinform..

[111]  Liqun Luo,et al.  Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development , 2001, Trends in Neurosciences.

[112]  Jai Y. Yu,et al.  Sexual Dimorphism in the Fly Brain , 2010, Current Biology.

[113]  Phillip G. Popovich,et al.  Semi-automated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia , 2010, Journal of Neuroscience Methods.

[114]  A. Efrat,et al.  NeuronMetrics: Software for semi-automated processing of cultured neuron images , 2007, Brain Research.

[115]  Barry J. Dickson,et al.  The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system , 2017, bioRxiv.

[116]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[117]  Stephen M. Plaza,et al.  DVID: Distributed Versioned Image-Oriented Dataservice , 2019, Front. Neural Circuits.

[118]  Michael B. Reiser,et al.  Ultra-selective looming detection from radial motion opponency , 2017, Nature.

[119]  Stanley Durrleman,et al.  Deformetrica 4: An Open-Source Software for Statistical Shape Analysis , 2018, ShapeMI@MICCAI.

[120]  Charles R. Gerfen,et al.  Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain , 2019, Cell.

[121]  Chet C. Sherwood,et al.  The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis) , 2014, Brain Structure and Function.

[122]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[123]  Stefan Schlager,et al.  Morpho and Rvcg – Shape Analysis in R: R-Packages for Geometric Morphometrics, Shape Analysis and Surface Manipulations , 2017 .

[124]  Jinhyun Kim,et al.  neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the SWC Format 123 , 2015, eNeuro.

[125]  Larry Lindsey,et al.  High-precision automated reconstruction of neurons with flood-filling networks , 2017, Nature Methods.

[126]  G. Jefferis,et al.  A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila , 2019, Neuron.

[127]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[128]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[129]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[130]  Yanjie Li,et al.  Metrics for comparing neuronal tree shapes based on persistent homology , 2016, bioRxiv.

[131]  Herwig Baier,et al.  A Cellular-Resolution Atlas of the Larval Zebrafish Brain , 2019, Neuron.

[132]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[133]  Kei Ito,et al.  A map of octopaminergic neurons in the Drosophila brain , 2009, The Journal of comparative neurology.

[134]  Louis K. Scheffer,et al.  The Fly Brain Atlas. , 2019, Annual review of cell and developmental biology.

[135]  Keram Pfeiffer,et al.  Neuroarchitecture of the dung beetle central complex , 2018, The Journal of comparative neurology.

[136]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[137]  Kei Ito,et al.  Technical and Organizational Considerations for the Long-Term Maintenance and Development of Digital Brain Atlases and Web-Based Databases , 2010, Front. Syst. Neurosci..

[138]  Hanchuan Peng,et al.  Clonal Development and Organization of the Adult Drosophila Central Brain , 2013, Current Biology.

[139]  S. Saalfeld,et al.  An unbiased template of the Drosophila brain and ventral nerve cord , 2018, bioRxiv.

[140]  G. Rubin,et al.  Communication from Learned to Innate Olfactory Processing Centers Is Required for Memory Retrieval in Drosophila , 2018, Neuron.

[141]  Patrick R Hof,et al.  Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals , 2018, The Journal of comparative neurology.

[142]  Hyowon Lee,et al.  The morphology of supragranular pyramidal neurons in the human insular cortex: a quantitative Golgi study. , 2009, Cerebral cortex.

[143]  Julijana Gjorgjieva,et al.  A neural circuit arbitrates between perseverance and withdrawal in hungry Drosophila , 2018, bioRxiv.

[144]  T. Préat,et al.  Neuroanatomy: Brain asymmetry and long-term memory , 2004, Nature.

[145]  David S. Lorberbaum,et al.  Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development , 2017, eLife.