Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks

[1]  Eleni P. Mimitou,et al.  DNA end resection: many nucleases make light work. , 2009, DNA repair.

[2]  K. Myung,et al.  Faithful after break-up: suppression of chromosomal translocations , 2009, Cellular and Molecular Life Sciences.

[3]  Rodney Rothstein,et al.  At Loose Ends: Resecting a Double-Strand Break , 2009, Cell.

[4]  M. Resnick,et al.  Inhibition of DNA double-strand break repair by the Ku heterodimer in mrx mutants of Saccharomyces cerevisiae. , 2009, DNA repair.

[5]  Judith L. Campbell,et al.  Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair , 2009, PloS one.

[6]  A. Aguilera,et al.  DNA Repair in Mammalian Cells , 2009, Cellular and Molecular Life Sciences.

[7]  A. Aguilera,et al.  DNA double-strand break repair: how to fix a broken relationship , 2009 .

[8]  T. Paull,et al.  The P. furiosus Mre11/Rad50 Complex Promotes 5′ Strand Resection at a DNA Double-Strand Break , 2008, Cell.

[9]  S. Jackson,et al.  DNA helicases Sgs1 and BLM promote DNA double-strand break resection. , 2008, Genes & development.

[10]  Eleni P. Mimitou,et al.  Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing , 2008, Nature.

[11]  D. Ferguson,et al.  Mre11 Nuclease Activity Has Essential Roles in DNA Repair and Genomic Stability Distinct from ATM Activation , 2008, Cell.

[12]  P. Russell,et al.  Mre11 Dimers Coordinate DNA End Bridging and Nuclease Processing in Double-Strand-Break Repair , 2008, Cell.

[13]  Hong Yan,et al.  Identification of the Xenopus DNA2 protein as a major nuclease for the 5′→3′ strand-specific processing of DNA ends , 2008, Nucleic acids research.

[14]  Sang Eun Lee,et al.  Sgs1 Helicase and Two Nucleases Dna2 and Exo1 Resect DNA Double-Strand Break Ends , 2008, Cell.

[15]  G. Lucchini,et al.  The Yku70–Yku80 complex contributes to regulate double‐strand break processing and checkpoint activation during the cell cycle , 2008, EMBO reports.

[16]  Y. Zhang,et al.  Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations , 2008, Nature.

[17]  T. E. Wilson,et al.  Recruitment and Dissociation of Nonhomologous End Joining Proteins at a DNA Double-Strand Break in Saccharomyces cerevisiae , 2008, Genetics.

[18]  R. Ghirlando,et al.  Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. , 2007, Molecular cell.

[19]  Jiri Bartek,et al.  Human CtIP promotes DNA end resection , 2007, Nature.

[20]  P. Russell,et al.  Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. , 2007, Molecular cell.

[21]  A. Tomkinson,et al.  Role of Dnl4–Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination , 2007, Nature Structural &Molecular Biology.

[22]  J. Gautier,et al.  Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. , 2007, Molecular cell.

[23]  M. J. Neale,et al.  Endonucleolytic processing of covalent protein-linked DNA double-strand breaks , 2005, Nature.

[24]  M. Kupiec,et al.  The CDK regulates repair of double‐strand breaks by homologous recombination during the cell cycle , 2004, The EMBO journal.

[25]  L. Symington,et al.  EXO1-A multi-tasking eukaryotic nuclease. , 2004, DNA repair.

[26]  L. Symington,et al.  Recombination proteins in yeast. , 2004, Annual review of genetics.

[27]  Marco Foiani,et al.  DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1 , 2004, Nature.

[28]  Janaki Veeraraghavan,et al.  On the Roles of Saccharomyces cerevisiae Dna2p and Flap Endonuclease 1 in Okazaki Fragment Processing* , 2004, Journal of Biological Chemistry.

[29]  A. Bertuch,et al.  EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. , 2004, Genetics.

[30]  J. Hackett,et al.  End Resection Initiates Genomic Instability in the Absence of Telomerase , 2003, Molecular and Cellular Biology.

[31]  Anna Malkova,et al.  Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast , 2003, Cell.

[32]  M. Lieber Faculty Opinions recommendation of Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. , 2003 .

[33]  A. Matsuura,et al.  Competition between the Rad50 Complex and the Ku Heterodimer Reveals a Role for Exo1 in Processing Double-Strand Breaks but Not Telomeres , 2003, Molecular and Cellular Biology.

[34]  D. Gordenin,et al.  Okazaki Fragment Maturation in Yeast , 2003, The Journal of Biological Chemistry.

[35]  D. Lydall,et al.  EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. , 2002, Genes & development.

[36]  J. Haber,et al.  Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. , 2002, DNA repair.

[37]  A. Tomkinson,et al.  Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. , 2001, Molecular cell.

[38]  P. Sung,et al.  DNA Structure-specific Nuclease Activities in theSaccharomyces cerevisiae Rad50·Mre11 Complex* , 2001, The Journal of Biological Chemistry.

[39]  J. Walker,et al.  Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair , 2001, Nature.

[40]  Jung-Ae Kim,et al.  RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes , 2001, Nature.

[41]  John A. Tainer,et al.  Structural Biochemistry and Interaction Architecture of the DNA Double-Strand Break Repair Mre11 Nuclease and Rad50-ATPase , 2001, Cell.

[42]  H. Ogawa,et al.  Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. , 2000, Molecular biology of the cell.

[43]  J. Petrini,et al.  The Mre11-Rad50-Xrs2 Protein Complex Facilitates Homologous Recombination-Based Double-Strand Break Repair inSaccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[44]  T. Paull,et al.  Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. , 1999, Genes & development.

[45]  J. R. Ferguson,et al.  The Nuclease Activity of Mre11 Is Required for Meiosis but Not for Mating Type Switching, End Joining, or Telomere Maintenance , 1999, Molecular and Cellular Biology.

[46]  T. Ogawa,et al.  Complex Formation and Functional Versatility of Mre11 of Budding Yeast in Recombination , 1998, Cell.

[47]  T. Shibata,et al.  Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination , 1998, The EMBO journal.

[48]  B. Nelms,et al.  Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. , 1998, Genetics.

[49]  J. Haber,et al.  Saccharomyces Ku70, Mre11/Rad50, and RPA Proteins Regulate Adaptation to G2/M Arrest after DNA Damage , 1998, Cell.

[50]  T. Paull,et al.  The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. , 1998, Molecular cell.

[51]  F. Fabre,et al.  Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae , 1994, Molecular and cellular biology.

[52]  A. Arnberg,et al.  HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. , 1989, Journal of molecular biology.

[53]  J. Nickoloff,et al.  Regulation of DNA double-strand break repair pathway choice , 2008, Cell Research.

[54]  Jiri Bartek,et al.  ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks , 2006, Nature Cell Biology.