Thermal and stress studies of normal incidence Mo/B4C multilayers for a 6.7 nm wavelength.

Wavelength, reflectance, and stress stability of Mo/B(4)C multilayers were studied as a function of postdeposition annealing up to 900 °C. These multilayers are of interest as normal incidence coatings for wavelengths above the boron K-absorption edge. Mo/B(4)C multilayers deposited at low sputtering pressure have high compressive stress. Zero stress can be achieved at 360 °C-370 °C, but annealing at <200 °C is sufficient to reduce stress by ∼40%. This stress relaxation is accompanied with a multilayer period expansion of ∼0.02 nm and a <0.5% decrease in normal incidence reflectivity. The multilayer period remains stable up to ∼600 °C, while intrinsic stress changes from compressive to tensile. A four-layer model with amorphous molybdenum and boron carbide layers separated by amorphous layers of molybdenum borides (Mo(x)B(y)) is presented. These interlayers are present already in the as-deposited state and continue to grow with increasing temperature. Their presence lowers the optical contrast and the achievable reflectivity. However, they also increase multilayer thermal stability. At temperatures >600 °C, a noticeable decrease in reflectivity associated with the phase transition from amorphous to crystalline molybdenum boride is observed. This is accompanied with an increase in interface and surface roughness and a change in stress as a function of temperature.

[1]  Eric Louis,et al.  Nitridation and contrast of B4C/La interfaces and X-ray multilayer optics , 2010 .

[2]  In situ reflectance measurements of soft-x-ray/extreme-ultraviolet Mo/Y multilayer mirrors. , 1995, Optics letters.

[3]  D. W. Hoffman,et al.  The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures☆ , 1977 .

[4]  Fredrik Eriksson,et al.  Reflectivity and structural evolution of Cr/Sc and nitrogen containing Cr/Sc multilayers during thermal annealing , 2008 .

[5]  R S Rosen,et al.  Normal-incidence x-ray mirror for 7 nm. , 1991, Optics letters.

[6]  S. Braun,et al.  Stress compensation of a Mo/Si/C highly reflective multilayer by means of an optimised buffer layer and heat treatment , 2004 .

[7]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[8]  Richard A. London,et al.  Femtosecond time-delay X-ray holography , 2007, Nature.

[9]  F. Bridou,et al.  La/B4C small period multilayer interferential mirror for the analysis of boron , 2005 .

[10]  H. Chapman,et al.  Turning solid aluminium transparent by intense soft X-ray photoionization , 2009 .

[11]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[12]  D. Windt,et al.  Variation in stress with background pressure in sputtered Mo/Si multilayer films , 1995 .

[13]  S. Marchesini,et al.  Camera for coherent diffractive imaging and holography with a soft-x-ray free-electron laser. , 2007, Applied optics.

[14]  F. Bijkerk,et al.  Chemical interaction of B4C, B, and C with Mo/Si layered structures , 2010 .

[15]  David L. Windt,et al.  IMD—software for modeling the optical properties of multilayer films , 1998 .

[16]  E. Spiller,et al.  Sub-arcsecond observations of the solar X-ray corona , 1990, Nature.

[17]  Benjawan Kjornrattanawanich,et al.  Structural characterization and lifetime stability of Mo/Y extreme-ultraviolet multilayer mirrors. , 2004, Applied optics.

[18]  S. Bajt,et al.  Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers , 2001 .

[19]  M. Yanagihara,et al.  Thermal stability of sputtered Mo/X and W/X (X = BN:O, B(4)C:O, Si, and C) multilayer soft-x-ray mirrors. , 1994, Applied optics.

[20]  Yuriy Y. Platonov,et al.  Status of small d-spacing x-ray multilayers development at Osmic , 2002, SPIE Optics + Photonics.

[21]  P. Kearney,et al.  Materials for multilayer x-ray optics at wavelengths below 100 A , 1991 .

[22]  S. Yulin,et al.  Damage resistant and low stress EUV multilayer mirrors , 2001, Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468).

[23]  B. Weir,et al.  Stress relaxation in Mo/Si multilayer structures , 1992 .

[24]  Claude Montcalm,et al.  Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with post deposition thermal treatments , 2001 .

[25]  A. N. Yablonsky,et al.  Stress reduction of Mo/Si multilayer structures , 2001 .

[26]  Paul B. Mirkarimi,et al.  Stress, reflectance, and temporal stability of sputter-deposited Mo/Si and Mo/Be multilayer films for extreme ultraviolet lithography , 1999 .

[27]  E. Gullikson,et al.  Effects of O and N impurities on the nanostructural evolution during growth of Cr/Sc multilayers , 2009 .

[28]  S. A. Gusev,et al.  Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (λ≈6.7 nm) , 2009 .

[29]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[30]  J. Chalupský,et al.  Sub-micron focusing of soft x-ray free electron laser beam , 2009, Optics + Optoelectronics.

[31]  R. Hoover,et al.  Soft X-ray Images of the Solar Corona with a Normal-Incidence Cassegrain Multilayer Telescope , 1988, Science.

[32]  Finn Erland Christensen,et al.  Growth, structure, and performance of depth-graded W/Si multilayers for hard x-ray optics , 2000 .

[33]  F. Bijkerk,et al.  Enhanced diffusion upon amorphous-to-nanocrystalline phase transition in Mo/B4C/Si layered systems , 2010 .

[34]  H. Chapman,et al.  Soft x-ray free electron laser microfocus for exploring matter under extreme conditions. , 2009, Optics express.

[35]  Fred Bijkerk,et al.  Stress mitigation in Mo/Si multilayers for EUV lithography , 2003, SPIE Advanced Lithography.

[36]  D. W. Hoffman,et al.  Internal stresses in titanium, nickel, molybdenum, and tantalum films deposited by cylindrical magnetron sputtering , 1977 .

[37]  A. Hawryluk,et al.  Soft x‐ray projection lithography using an x‐ray reduction camera , 1988 .

[38]  H. Swanson,et al.  Standard X‐Ray Diffraction Powder Patterns , 1954 .

[39]  David L. Windt,et al.  Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films , 2000 .

[40]  Charles M. Falco,et al.  Survey of Ti-, B-, and Y-based soft x-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region. , 1996, Applied optics.

[41]  E. D. van Hattum,et al.  Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure. , 2010, Optics express.

[42]  Eric Louis,et al.  Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography , 2009 .

[43]  Fred Bijkerk,et al.  Improved contrast and reflectivity of multilayer reflective optics for wavelengths beyond the extreme UV , 2009, Advanced Lithography.

[44]  P. L. Perry,et al.  Characterization of Mo/B4C multilayers , 1991 .

[45]  Multilayer mirror for x rays below 190 eV. , 2001, Optics letters.

[46]  P. Jonnard,et al.  Quantitative TEM characterizations of La/B4C and Mo/B4C ultrathin multilayer gratings by the geometric phase method , 2007 .

[47]  N. I. Chkhalo,et al.  Multilayer X-ray mirrors based on La/B4C and La/B9C , 2010 .

[48]  J. Larruquert,et al.  Electron-beam deposited boron coatings for the extreme ultraviolet. , 2008, Applied optics.

[49]  Ronald Gronsky,et al.  Microstructure - Roughness Interelation in Ru/C and Ru/B4C X-RAY Multilayers , 1992 .

[50]  Frederik Bijkerk,et al.  Thermally induced decomposition of B4C barrier layers in Mo/Si multilayer structures , 2010 .