A block rational Krylov method for 3-D time-domain marine controlled-source electromagnetic modelling

We introduce a novel block rational Krylov method to accelerate three-dimensional time-domain marine controlled-source electromagnetic modeling with multiple sources. This method approximates the time-varying electric solutions explicitly in terms of matrix exponential functions. A main attraction is that no time stepping is required, while most of the computational costs are concentrated in constructing a rational Krylov basis. We optimize the shift parameters defining the rational Krylov space with a positive exponential weight function, thereby producing smaller approximation errors at later times and reducing iteration numbers. Furthermore, for multi-source modeling problems, we adopt block Krylov techniques to incorporate all source vectors in a single approximation space. The method is tested on two examples: a layered seafloor model and a 3D hydrocarbon reservoir model with seafloor bathymetry. The modeling results are found to agree very well with those from 1D semi-analytic solutions and finite-element time-domain solutions using a backward Euler scheme, respectively. Benchmarks of the block rational Krylov method demonstrate that it can be as up to 10 times faster than backward Euler. The block method also benefits from better memory efficiency, resulting in considerable speedup compared to non-block methods.

[1]  Michael S. Zhdanov,et al.  3D inversion of airborne electromagnetic data using a moving footprint , 2010 .

[2]  Michael Commer,et al.  A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources , 2004 .

[3]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[4]  Changchun Yin,et al.  3D time-domain airborne EM modeling for an arbitrarily anisotropic earth , 2016 .

[5]  Vladimir Druskin,et al.  Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..

[6]  R. Smith,et al.  A helicopter time-domain EM system applied to mineral exploration: system and data , 2005 .

[7]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[8]  Vladimir Puzyrev,et al.  A review of block Krylov subspace methods for multisource electromagnetic modelling , 2015 .

[9]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[10]  Douglas W. Oldenburg,et al.  Inversion of time-domain electromagnetic data for a horizontally layered Earth , 1993 .

[11]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[12]  D. Connell,et al.  A numerical comparison of time and frequency‐domain marine electromagnetic methods for hydrocarbon exploration in shallow water , 2013 .

[13]  David L. Alumbaugh,et al.  3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach , 2010 .

[14]  Changchun Yin,et al.  3D inversion for multipulse airborne transient electromagnetic data , 2016 .

[15]  L. Knizhnerman,et al.  Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .

[16]  Stefan Güttel,et al.  Three-Dimensional Transient Electromagnetic Modeling Using Rational Krylov Methods , 2015 .

[17]  U. Kafri,et al.  The use of the time domain electromagnetic method to delineate saline groundwater in granular and carbonate aquifers and to evaluate their porosity , 2005 .

[18]  Xiangyun Hu,et al.  3D vector finite-element electromagnetic forward modeling for large loop sources using a total-field algorithm and unstructured tetrahedral grids , 2017 .

[19]  Gregory A. Newman,et al.  Transient electromagnetic response of a three-dimensional body in a layered earth , 1986 .

[20]  M. Stewart,et al.  Transient Electromagnetic Sounding for Groundwater , 1986 .

[21]  Stefan Güttel,et al.  Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature , 2014, SIAM J. Matrix Anal. Appl..

[22]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[23]  Bruce Hobbs,et al.  Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey , 2002 .

[24]  P. Keating,et al.  The inversion of time-domain airborne electromagnetic data using the plate model , 1990 .

[25]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[26]  Gerald W. Hohmann,et al.  Diffusion of electromagnetic fields into a two-dimensional earth; a finite-difference approach , 1984 .

[27]  Jing Cai,et al.  3D time-domain airborne EM forward modeling with topography , 2016 .

[28]  S. Güttel Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .

[29]  Xiangyun Hu,et al.  Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses , 2016 .

[30]  Douglas W. Oldenburg,et al.  3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings , 2014 .

[31]  John Knight,et al.  Transient electromagnetic calculations using the Gaver-Stehfest inverse Laplace transform method , 1982 .

[32]  Vladimir Druskin,et al.  Solution of 3D time-domain electromagnetic problems using optimal subspace projection , 2011 .

[33]  H. Kim,et al.  Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments , 2013 .

[34]  Colin Farquharson,et al.  A finite-volume solution to the geophysical electromagnetic forward problem using unstructured grids , 2014 .

[35]  Douglas W. Oldenburg,et al.  Three dimensional inversion of multisource time domain electromagnetic data , 2013 .

[36]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[37]  S. Frankel,et al.  Stability conditions in the numerical treatment of parabolic differential equations , 1953 .

[38]  Xiangyun Hu,et al.  A finite-element time-domain forward solver for electromagnetic methods with complex-shaped loop sources , 2018 .

[39]  Chester J. Weiss,et al.  Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling , 2006 .

[40]  Jürgen Schulze Towards a Tighter Coupling of Bottom-Up and Top-Down Sparse Matrix Ordering Methods , 2001 .

[41]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[42]  Douglas W. Oldenburg,et al.  Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit , 2012 .

[43]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[44]  Hansruedi Maurer,et al.  A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling , 2013 .

[45]  G. W. Hohmann,et al.  A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .

[46]  Ralph-Uwe Börner,et al.  Numerical Modelling in Geo-Electromagnetics: Advances and Challenges , 2010 .

[47]  Esben Auken,et al.  The application of the transient electromagnetic method in hydrogeophysical surveys , 2003 .

[48]  O. Ernst,et al.  Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection , 2008 .

[49]  Jeffrey S. Ovall,et al.  A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling , 2011 .

[50]  Hongzhu Cai,et al.  Finite-element time-domain modeling of electromagnetic data in general dispersive medium using adaptive Padé series , 2017, Computational Geosciences.

[51]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[52]  Walter L. Anderson Fourier cosine and sine transforms using lagged convolutions in double-precision (subprograms DLAGF0/DLAGF1) , 1983 .

[53]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[54]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[55]  Cong Wang,et al.  Efficient Modeling of Time-domain AEM using Finite-volume Method , 2017 .

[56]  Chad Lieberman,et al.  On Adaptive Choice of Shifts in Rational Krylov Subspace Reduction of Evolutionary Problems , 2010, SIAM J. Sci. Comput..