Cancellation of simulated environmental noise as a tool for measuring vocal performance during noise exposure.

It can be difficult for the voice clinician to observe or measure how a patient uses his voice in a noisy environment. We consider here a novel method for obtaining this information in the laboratory. Worksite noise and filtered white noise were reproduced over high-fidelity loudspeakers. In this noise, 11 subjects read an instructional text of 1.5 to 2 minutes duration, as if addressing a group of people. Using channel estimation techniques, the site noise was suppressed from the recording, and the voice signal alone was recovered. The attainable noise rejection is limited only by the precision of the experimental setup, which includes the need for the subject to remain still so as not to perturb the estimated acoustic channel. This feasibility study, with 7 female and 4 male subjects, showed that small displacements of the speaker's body, even breathing, impose a practical limit on the attainable noise rejection. The noise rejection was typically 30 dB and maximally 40 dB down over the entire voice spectrum. Recordings thus processed were clean enough to permit voice analysis with the long-time average spectrum and the computerized phonetogram. The effects of site noise on voice sound pressure level, fundamental frequency, long-term average spectrum centroid, phonetogram area, and phonation time were much as expected, but with some interesting differences between females and males.