Temperature dependency of MOSFET device characteristics in 4H- and 6H-silicon carbide (SiC)
暂无分享,去创建一个
L. Tolbert | L.M. Tolbert | M. Hasanuzzama | S.K. Islam | M.T. Alam | M.T. Alam | M. Hasanuzzama | S. Islam
[1] M. Melloch,et al. High-voltage double-implanted power MOSFET's in 6H-SiC , 1997, IEEE Electron Device Letters.
[2] S. Ryu. Development of CMOS technology for smart power applications in silicon carbide , 1997 .
[3] H. Casey,et al. Devices for Integrated Circuits: Silicon and III-V Compound Semiconductors , 1998 .
[4] T. Chow,et al. Silicon carbide benefits and advantages for power electronics circuits and systems , 2002, Proc. IEEE.
[5] A. Agarwal,et al. 1.1 kV 4H-SiC power UMOSFETs , 1997, IEEE Electron Device Letters.
[6] Leon M. Tolbert,et al. SYSTEM IMPACT OF SILICON CARBIDE POWER DEVICES , 2002 .
[7] M. Bhatnagar,et al. Silicon carbide high-power devices , 1996 .
[8] B. J. Baliga,et al. Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .
[9] F. Shoucair,et al. High-temperature diffusion leakage-current-dependent MOSFET small-signal conductance , 1984, IEEE Transactions on Electron Devices.
[10] F. S. Shoucair,et al. 6H silicon carbide MOSFET modelling for high temperature analogue integrated circuits (25–500°C) , 1996 .
[11] F. Shoucair. Design Consideration in High Temperature Analog CMOS Integrated Circuits , 1986 .
[12] Adrian Powell,et al. SiC materials-progress, status, and potential roadblocks , 2002, Proc. IEEE.
[13] M. Shur,et al. Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .
[14] Leon M. Tolbert,et al. Effects of temperature variation (300–600 K) in MOSFET modeling in 6H–silicon carbide , 2004 .