Temperature dependency of MOSFET device characteristics in 4H- and 6H-silicon carbide (SiC)

An analytical model for lateral MOSFET that includes the effects of temperature variation in 4H- and 6H-SiC poly-type is presented in this paper. The model includes the effect of temperature variation on the threshold voltage, the carrier mobility, the body leakage current, and the drain and source contact region resistances. MOSFET device behavior in 4H-SiC is also simulated and compared with 6H-SiC material system.

[1]  M. Melloch,et al.  High-voltage double-implanted power MOSFET's in 6H-SiC , 1997, IEEE Electron Device Letters.

[2]  S. Ryu Development of CMOS technology for smart power applications in silicon carbide , 1997 .

[3]  H. Casey,et al.  Devices for Integrated Circuits: Silicon and III-V Compound Semiconductors , 1998 .

[4]  T. Chow,et al.  Silicon carbide benefits and advantages for power electronics circuits and systems , 2002, Proc. IEEE.

[5]  A. Agarwal,et al.  1.1 kV 4H-SiC power UMOSFETs , 1997, IEEE Electron Device Letters.

[6]  Leon M. Tolbert,et al.  SYSTEM IMPACT OF SILICON CARBIDE POWER DEVICES , 2002 .

[7]  M. Bhatnagar,et al.  Silicon carbide high-power devices , 1996 .

[8]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[9]  F. Shoucair,et al.  High-temperature diffusion leakage-current-dependent MOSFET small-signal conductance , 1984, IEEE Transactions on Electron Devices.

[10]  F. S. Shoucair,et al.  6H silicon carbide MOSFET modelling for high temperature analogue integrated circuits (25–500°C) , 1996 .

[11]  F. Shoucair Design Consideration in High Temperature Analog CMOS Integrated Circuits , 1986 .

[12]  Adrian Powell,et al.  SiC materials-progress, status, and potential roadblocks , 2002, Proc. IEEE.

[13]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[14]  Leon M. Tolbert,et al.  Effects of temperature variation (300–600 K) in MOSFET modeling in 6H–silicon carbide , 2004 .