Hexagonal MnTe with Antiferromagnetic Spin Splitting and Hidden Rashba–Dresselhaus Interaction for Antiferromagnetic Spintronics

Hexagonal MnTe emerges as a critical component in designing magnetic quantum heterostructures, calling for a detailed study. After finding a suitable combination of exchange-correlation functional and corrections, our study within ab initio density functional theory uncovers an insulating state with a preferred antiferromagnetic order. We compute the exchange interaction strengths to estimate the antiferromagnetic ordering temperature via Monte Carlo calculations. Our calculations and symmetry analysis reveal a large spin splitting in the system due to the antiferromagnetic order without considering spin-orbit interaction, except in the k x - k y plane. Critically examining the band dispersion and spin textures obtained from our calculations and comparing them with an insightful symmetry analysis and analytical model, we confirm a combined Rashba-Dresselhaus interaction in the k x - k y plane, around the K point of the system. Finally, we find ferroelectricity in the system for a higher energy magnetic configuration. Our results and insights would help design heterostructures of MnTe for technological applications.

[1]  J. Sinova,et al.  Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry , 2022, Physical Review X.

[2]  Vivek Kumar,et al.  Rashba-like spin-orbit interaction and spin texture at the KTaO$_\text{3}$ (001) surface from DFT calculations , 2022, 2209.07723.

[3]  A. Zunger,et al.  Different shapes of spin textures as a journey through the Brillouin zone , 2021, Physical Review B.

[4]  Fang Wang,et al.  One-Pot Synthesis Enables Magnetic Coupled Cr2Te3/MnTe/Cr2Te3 Integrated Heterojunction Nanorods. , 2021, Nano letters.

[5]  C. Autieri,et al.  Realization of the Chern-insulator and axion-insulator phases in antiferromagnetic MnTe/Bi2(Se,Te)3/MnTe heterostructures , 2021, 2101.06259.

[6]  J. Chakraborty,et al.  Perovskite oxide heterojunction for Rashba-Dresselhaus assisted antiferromagnetic spintronics , 2020, Physical Review B.

[7]  F. Pan,et al.  Charge-magnon conversion at the topological insulator/antiferromagnetic insulator interface , 2020 .

[8]  A. Zunger,et al.  Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling , 2020, 2008.08532.

[9]  A. Zunger,et al.  Giant momentum-dependent spin splitting in centrosymmetric low- Z antiferromagnets , 2020 .

[10]  P. Kelly,et al.  DFT study of itinerant ferromagnetism in p -doped monolayers of MoS2 , 2019, Physical Review B.

[11]  R. Winkler,et al.  Effective dynamics of two-dimensional Bloch electrons in external fields derived from symmetry , 2019, Physical Review B.

[12]  Shuang Jia,et al.  A New Magnetic Topological Quantum Material Candidate by Design , 2019, ACS central science.

[13]  Kang L. Wang,et al.  Planar Hall Effect in Antiferromagnetic MnTe Thin Films. , 2018, Physical review letters.

[14]  R. Arita,et al.  Emergence of interfacial conduction and ferromagnetism in MnTe/InP , 2018, Applied Physics Letters.

[15]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[16]  J. Chakraborty Interplay of covalency, spin-orbit coupling, and geometric frustration in the d3.5 system Ba3LiIr2O9 , 2018, Physical Review B.

[17]  B. Keimer,et al.  The physics of quantum materials , 2017, Nature Physics.

[18]  J. Wunderlich,et al.  Magnetic anisotropy in antiferromagnetic hexagonal MnTe , 2017, 1710.08523.

[19]  Y. Kvashnin,et al.  Magnetoelectric properties of multiferroic CuCrO2 studied by means of ab initio calculations and Monte Carlo simulations , 2017, 1710.07538.

[20]  J. Chakraborty Electronic and magnetic properties of low-dimensional system Co2TeO3Cl2 , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  J. Perdew,et al.  Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation , 2016 .

[22]  Robert M. Hanson,et al.  MAGNDATA: towards a database of magnetic structures. I. The commensurate case , 2016 .

[23]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[24]  T. Jungwirth,et al.  Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe , 2015, Nature Communications.

[25]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[26]  P. Kelly,et al.  Tuning ferromagnetism at interfaces between insulating perovskite oxides. , 2014, Physical review letters.

[27]  A. Zunger,et al.  Hidden spin polarization in inversion-symmetric bulk crystals , 2014, Nature Physics.

[28]  I. Dasgupta,et al.  Role of Te in low-dimensional multiferroic material FeTe2O5Br , 2013, 1309.3232.

[29]  P. Barone,et al.  Electric Control of the Giant Rashba Effect in Bulk GeTe , 2013, Advanced materials.

[30]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[31]  D. Awschalom,et al.  Emergence of the persistent spin helix in semiconductor quantum wells , 2009, Nature.

[32]  B. Hennion,et al.  Spin-wave measurements on hexagonal MnTe of NiAs-type structure by inelastic neutron scattering , 2006 .

[33]  B. Hennion,et al.  Neutron scattering study of structural and magnetic properties of hexagonal MnTe , 2005 .

[34]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[35]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[36]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[40]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[41]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[42]  R. Resta Theory of the electric polarization in crystals , 1992 .

[43]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[44]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[45]  A. Cracknell,et al.  The mathematical theory of symmetry in solids;: Representation theory for point groups and space groups, , 1972 .