A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth’s magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

[1]  Mihail Codrescu,et al.  A fully analytic, low‐ and middle‐latitude ionospheric model , 1989 .

[2]  M. Mills,et al.  Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons , 2008 .

[3]  D. Hampton,et al.  Predicting Electron Population Characteristics in 2‐D Using Multispectral Ground‐Based Imaging , 2018 .

[4]  T. Moore,et al.  The Earth's Ionosphere. Plasma Physics and Electrodynamics. Michael C. Kelley, with contributions from Rodney A. Heelis. Academic Press, San Diego, CA, 1989. xii, 487 pp., illus. $89.95. International Geophysics Series, vol. 43. , 1990, Science.

[5]  J. Kiviranta Empirical Modeling of Solar Induced Variations of Nitric Oxide in the Upper Mesosphere and Lower Thermosphere , 2018 .

[6]  H. Dothe,et al.  On the rate coefficient of the N( 2 D)+O 2 ?NO+O reaction in the terrestrial therm , 2003 .

[7]  Dora Pancheva,et al.  Fast and ultrafast Kelvin wave modulations of the equatorial evening F region vertical drift and spread F development , 2014, Earth, Planets and Space.

[8]  A. Bhardwaj,et al.  A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE , 2012, 1203.0723.

[9]  M. Rees,et al.  Time dependent studies of the aurora—I. Ion density and composition , 1973 .

[10]  A. Pavlov Photochemistry of Ions at D-region Altitudes of the Ionosphere: A Review , 2014, Surveys in Geophysics.

[11]  H. Dothe,et al.  On the rate coefficient of the N(2D)+O2→NO+O reaction in the terrestrial thermosphere , 2002 .

[12]  Vladimir Truhlik,et al.  The International Reference Ionosphere 2012 – a model of international collaboration , 2014 .

[13]  D. Poli,et al.  研究室紹介 Satellite-and Ground-Based Stereo Analysis of Clouds , 2005 .

[14]  R. Daniell,et al.  Transport-theoretic model for the electron-proton-hydrogen atom aurora: 2. Model results , 1993 .

[15]  D. Hampton,et al.  A synthesis of star calibration techniques for ground‐based narrowband electron‐multiplying charge‐coupled device imagers used in auroral photometry , 2016 .

[16]  S. Solomon,et al.  The NCAR TIE‐GCM , 2014 .

[17]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[18]  M. Conde,et al.  Satellite and ground-based observations of auroral energy deposition and the effects on thermospheric composition during large geomagnetic storms: 1. Great geomagnetic storm of 20 November 2003 , 2008 .

[19]  B. Jackel,et al.  On the 630 nm red‐line pulsating aurora: Red‐line Emission Geospace Observatory observations and model simulations , 2016 .

[20]  S. Solomon,et al.  Auroral particle transport using Monte Carlo and hybrid methods , 2001 .

[21]  Stanley C. Solomon,et al.  Auroral excitation of the N2 2P(0,0) and VK(0,9) bands , 1989 .

[22]  M. Conde,et al.  The application of ground-based optical techniques for inferring electron energy deposition and composition change during auroral precipitation events , 2006 .

[23]  Vir Singh,et al.  An updated model of atomic oxygen redline dayglow emission , 2014 .

[24]  S. Adler-Golden,et al.  User's Manual for SAG-2, SHARC/SAMM Atmosphere Generator , 2003 .

[25]  Vladimir O. Papitashvili,et al.  A revised corrected geomagnetic coordinate system for Epochs 1985 and 1990. , 1992 .

[26]  J. Hecht,et al.  Deducing composition and incident electron spectra from ground‐based auroral optical measurements: A study of auroral red line processes , 1989 .

[27]  M. Sinnhuber,et al.  Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere , 2012, Surveys in Geophysics.

[28]  Brian Hamilton,et al.  International Geomagnetic Reference Field: the 12th generation , 2015, Earth, Planets and Space.

[29]  S. Solomon Global modeling of thermospheric airglow in the far ultraviolet , 2017 .

[30]  V. Angelopoulos,et al.  Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: A detailed case study , 2012 .

[31]  P. Richards,et al.  Reexamination of ionospheric photochemistry , 2011 .

[32]  R. E. Huffman,et al.  Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results , 1999 .

[33]  J. Lilensten,et al.  Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations , 1994 .

[34]  M. Conde,et al.  Auroral ionospheric F region density cavity formation and evolution: MICA campaign results , 2014 .

[35]  M. Rees,et al.  Characteristics of auroral electron precipitation derived from optical spectroscopy , 1989 .

[36]  M. Conde,et al.  An investigation comparing ground‐based techniques that quantify auroral electron flux and conductance , 2015 .

[37]  R. Treumann,et al.  Auroral Plasma Physics , 2002 .

[38]  D. P. Steele,et al.  Electron auroral excitation efficiencies and intensity ratios , 1990 .

[39]  Robert R. Meier,et al.  Deducing composition and incident electron spectra from ground-based auroral optical measurements: Theory and model results , 1989 .

[40]  M. Rees,et al.  Angular dependent transport of auroral electrons in the upper atmosphere , 1989 .

[41]  M. Rees,et al.  Time dependent studies of the aurora—II. Spectroscopic morphology , 1973 .

[42]  Robert W. Schunk,et al.  Ionospheres by Robert Schunk , 2009 .

[43]  Paul B. Hays,et al.  The auroral 6300 Å emission: Observations and modeling , 1988 .

[44]  D. Baker,et al.  Particle Acceleration in the Magnetotail and Aurora , 2012 .

[46]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[47]  K. N. Joshipura,et al.  Ionization of metastable nitrogen and oxygen atoms by electron impact: Relevance to auroral emissions , 2014 .