Green emission and laser properties of Ho3+ doped titano lead borate (TLB) glasses for colour display applications

[1]  Shyam Sundar Ghoshal,et al.  Intense red and green luminescence from holmium activated zinc-sulfo-boro-phosphate glass: Judd-Ofelt evaluation , 2019, Journal of Alloys and Compounds.

[2]  S. Karthik,et al.  Optical and luminescence characteristics of europium doped barium lithium fluoroborate glasses , 2019, Chemical Physics.

[3]  M. Nogami,et al.  An in-depth study of the Judd-Ofelt analysis, spectroscopic properties and energy transfer of Dy3+ in alumino-lithium-telluroborate glasses , 2019, Journal of Luminescence.

[4]  V. Makhov,et al.  Sensitization of luminescence from Sm3+ ions in fluoride hosts K2YF5 and K2GdF5 by doping with Tb3+ions , 2019, Journal of Luminescence.

[5]  M. Gökçe Development of Eu3+ doped bismuth germanate glasses for red laser applications , 2019, Journal of Non-Crystalline Solids.

[6]  M. Sobczyk,et al.  Comparative study of optical properties of Ho3+ -doped RE2O3-Na2O-ZnO-TeO2 glasses , 2019, Journal of Luminescence.

[7]  A. Umar,et al.  Erbium-doped fluorotellurite titanate glasses for near infrared broadband amplifiers , 2018, Optical Materials.

[8]  S. Ghoshal,et al.  Spectroscopic traits of holmium in magnesium zinc sulfophosphate glass host: Judd – Ofelt evaluation , 2018, Journal of Alloys and Compounds.

[9]  P. Manasa,et al.  Spectroscopic investigations of neodymium doped barium bismuth fluoroborate glasses , 2018, Infrared Physics & Technology.

[10]  Y. C. Ratnakaram,et al.  Optical spectroscopy and luminescence properties of Ho 3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications , 2018 .

[11]  Pan Cheng,et al.  Around 2 μm fluorescence and energy transfer in Tm 3 + /Ho 3 + co-doped tellurite glass , 2018 .

[12]  Marcin Kochanowicz,et al.  Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+ , 2017 .

[13]  R. Kumar,et al.  Optical properties of Nd 3+ doped barium lithium fluoroborate glasses for near-infrared (NIR) emission , 2017 .

[14]  Sangwook Lee,et al.  Optical spectroscopy and emission properties of Ho3 +-doped gadolinium calcium silicoborate glasses for visible luminescent device applications , 2017 .

[15]  V. Sudarsan,et al.  Influence of red lead on the intensity of green and orange emissions of Sm3+ and Ho3+ co-doped ZnO–SrO–P2O5 glass system , 2017 .

[16]  M. Piasecki,et al.  Amplification of green emission of Ho3+ ions in lead silicate glasses by sensitizing with Bi3+ ions , 2016 .

[17]  S. Rai,et al.  Optical properties of Ho3 + in sol-gel silica glass co-doped with Aluminium , 2016 .

[18]  Satya Gopal RaoPatange,et al.  Structural evaluation on TeO2–SeO2–R2O ternary glass system using Raman and IR , 2016 .

[19]  Y. C. Ratnakaram,et al.  Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center , 2015 .

[20]  G. Prakash,et al.  Holmium doped Lead Tungsten Tellurite glasses for green luminescent applications , 2015 .

[21]  Y. C. Ratnakaram,et al.  Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission. , 2014, Luminescence : the journal of biological and chemical luminescence.

[22]  G. Prakash,et al.  Visible red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth Borate glasses , 2013 .

[23]  Y. Babu,et al.  Photoluminescence features of Ho3+ ion doped PbO–Bi2O3 borophosphate glass systems , 2013 .

[24]  Ming Li,et al.  ∼2 µm Luminescence and energy transfer characteristics in Tm3+/Ho3+co-doped silicate glass , 2013 .

[25]  C. K. Jayasankar,et al.  Optical properties of Ho3+ ions in lead phosphate glasses , 2012 .

[26]  E. Pun,et al.  Gain properties of the transition emissions near the second telecommunication window in Ho3+-doped multicomponent heavy-metal gallate glasses , 2012 .

[27]  C. Rao,et al.  Emission features of Ho3+ ion in Nb2O5, Ta2O5 and La2O3 mixed Li2O–ZrO2–SiO2 glasses , 2011 .

[28]  E. Pun,et al.  Emissions of 1.20 and 1.38 μm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications , 2011 .

[29]  M. Pollnau,et al.  Diode Pumped Erbium Cascade Fiber Lasers , 2011, IEEE Journal of Quantum Electronics.

[30]  Lili Hu,et al.  2.0 μm Emission properties of transparent oxyfluoride glass ceramics doped with Yb3+–Ho3+ ions , 2010 .

[31]  Ying Tian,et al.  2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+ , 2010 .

[32]  Y. C. Ratnakaram,et al.  Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses , 2010 .

[33]  Zhang Yuepin,et al.  Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions , 2009 .

[34]  Younes Messaddeq,et al.  Pump excited state absorption in holmium-doped fluoride glass , 2008 .

[35]  J. Méndez‐Ramos,et al.  Gain cross-sections of transparent oxyfluoride glass–ceramics single-doped with Ho3+ (at 2.0 μm) and with Tm3+ (at 1.8 μm) , 2007 .

[36]  Q. Zhang,et al.  Mid-Infrared Emission Characteristic and Energy Transfer of Ho3+-Doped Tellurite Glass Sensitized by Tm3+ , 2007, Journal of Fluorescence.

[37]  N. Sooraj Hussain,et al.  Absorption and emission properties of Ho3+ doped lead–zinc–borate glasses , 2006 .

[38]  A. Seddon,et al.  Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission , 2006 .

[39]  Shibin Jiang,et al.  Er 3+ -doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics , 2005 .

[40]  B. Park,et al.  Ho3+: (5S2,5F4)→5I5 transition in fluoride glasses , 2002 .

[41]  S. Yawale,et al.  Infrared spectra of zinc doped lead borate glasses , 2002 .

[42]  Hisayoshi Toratani,et al.  Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+Ho3+ doubly-doped glasses , 1996 .

[43]  Tetsuro Izumitani,et al.  Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ , 1995 .

[44]  B. Piriou,et al.  DSC and Raman studies of lead borate and lead silicate glasses , 1993 .

[45]  C. McCamy,et al.  Correlated color temperature as an explicit function of chromaticity coordinates , 1992 .

[46]  M. Chamarro,et al.  Judd-Ofelt Analysis and Multiphonon Relaxations of Rare Earth Ions in Fluorohafnate Glasses , 1991 .

[47]  R. Reisfeld,et al.  Optical intensities of holmium in tellurite, calibo, and phosphate glasses , 1976 .

[48]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[49]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[50]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .