Optimal Pruning in Parametric Differential Equations

Initial value problems for parametric ordinary differential equations (ODEs) arise in many areas of science and engineering. Since some of the data is uncertain, traditional numerical methods do not apply. This paper considers a constraint satisfaction approach that enhances traditional interval methods with a pruning component which uses a relaxation of the ODE and Hermite interpolation polynomials. It solves the main theoretical and practical open issue left in this approach: the choice of an optimal evaluation time for the relaxation. As a consequence, the constraint satisfaction approach is shown to provide a quadratic (asymptotical) improvement in accuracy over the best interval methods, while improving their running times. Experimental results confirm the theoretical results.

[1]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[2]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[3]  Robert Rihm Implicit Methods for Enclosing Solutions of ODEs , 1998, J. Univers. Comput. Sci..

[4]  Nedialko S. Nedialkov,et al.  An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1999, Reliab. Comput..

[5]  P. Hartman Ordinary Differential Equations , 1965 .

[6]  Eldon Hansen,et al.  Topics in Interval Analysis , 1969 .

[7]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[8]  T. E. Hull,et al.  Comparing numerical methods for stiff systems of O.D.E:s , 1975 .

[9]  C. Bendtsen,et al.  TADIFF , A FLEXIBLE C + + PACKAGE FOR AUTOMATIC DIFFERENTIATION using Taylor series expansion , 1997 .

[10]  J. Davenport Editor , 1960 .

[11]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[12]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[13]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[14]  Reliable Computing , 2001 .

[15]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[16]  Pascal Van Hentenryck,et al.  A Constraint Satisfaction Approach to Parametric Differential Equations , 2001, IJCAI.

[17]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[18]  Pedro Barahona,et al.  An Interval Constraint Approach to Handle Parametric Ordinary Differential Equations for Decision Support , 1999, CP.

[19]  Pascal Van Hentenryck,et al.  Multistep Filtering Operators for Ordinary Differential Equations , 1999, CP.

[20]  P. Eijgenraam The Solution of Initial Value Problems Using Interval Arithmetic , 1981 .

[21]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[22]  C. Bendtsen FADBAD, a flexible C++ package for automatic differentiation - using the forward and backward method , 1996 .

[23]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[24]  Ulrich W. Kulisch,et al.  Computerarithmetic : scientific computation and programming languages , 1987 .

[25]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .