Stability of Non-constant Equilibrium Solutions for Bipolar Full Compressible Navier–Stokes–Maxwell Systems

We study the stability of smooth solutions near non-constant equilibrium states for a bipolar full compressible Navier–Stokes–Maxwell system in a three-dimensional torus $$\mathbb {T}= (\mathbb {R}/\mathbb {Z})^3$$T=(R/Z)3. This system is quasilinear hyperbolic-parabolic. In the first part, by using the maximum principle, we find a non-constant steady state solution with small amplitude for this system. In the second part, with the help of suitable choices of symmetrizers and classic energy estimates, we prove that global smooth solutions exist and converge to the non-constant steady states as the time goes to infinity. As a byproduct, we obtain the global stability for the bipolar full compressible Navier–Stokes–Poisson system.

[1]  Takaaki Nishida,et al.  Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids , 1983 .

[2]  Changjiang Zhu,et al.  Asymptotic stability of stationary solutions to the compressible Euler-Maxwell equations , 2014, 1403.6595.

[3]  Yue-Jun Peng Stability of non-constant equilibrium solutions for Euler–Maxwell equations , 2015 .

[4]  Renjun Duan Green's function and large time behavior of the Navier-Stokes-Maxwell system , 2011 .

[5]  Ansgar Jüngel,et al.  Quasi-hydrodynamic Semiconductor Equations , 2001 .

[6]  Tong Yang,et al.  Compressible non-isentropic bipolar navier–stokes–poisson system in ℝ 3 , 2011 .

[7]  The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data , 2009, 0905.2872.

[8]  Slim Ibrahim,et al.  LOCAL SOLVABILITY AND LOSS OF SMOOTHNESS OF THE NAVIER-STOKES-MAXWELL EQUATIONS WITH LARGE INITIAL DATA , 2011, 1109.6089.

[9]  Shu Wang,et al.  Stability of non‐constant steady‐state solutions for non‐isentropic Euler–Maxwell system with a temperature damping term , 2016 .

[10]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[11]  Takaaki Nishida,et al.  The Initial Value Problem for the Equations of Motion of compressible Viscous and Heat-conductive Fluids. , 1979 .

[12]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[13]  Chengchun Hao,et al.  Global existence for compressible Navier–Stokes–Poisson equations in three and higher dimensions , 2008, 0809.4527.

[14]  Changjiang Zhu,et al.  Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in R^3 , 2011 .

[15]  W. Weike,et al.  Pointwise estimates of solution for non-isentropic navier-stokes-poisson equations in multi-dimensions , 2012 .

[16]  Guojing Zhang,et al.  Optimal Decay Rate of the Compressible Navier–Stokes–Poisson System in $${\mathbb {R}^3}$$ , 2008, 0811.3788.

[17]  Weike Wang,et al.  Pointwise estimates of solution for the Navier–Stokes–Poisson equations in multi-dimensions , 2010 .

[18]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[19]  Yue-Jun Peng,et al.  Stability of non-constant equilibrium solutions for two-fluid Euler–Maxwell systems , 2015 .

[20]  Yong Wang,et al.  Stability of Steady States of the Navier-Stokes-Poisson Equations with Non-Flat Doping Profile , 2015, SIAM J. Math. Anal..

[21]  Shu Wang,et al.  Asymptotic behavior of global smooth solutions for bipolar compressible Navier-Stokes-Maxwell system from plasmas , 2015 .

[22]  Henry Rishbeth,et al.  Introduction to ionospheric physics , 1969 .

[23]  S. Ibrahim,et al.  On the wellposedness of the Navier-Stokes-Maxwell system , 2012, 1207.6187.

[24]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[25]  Sahbi Keraani,et al.  Global Small Solutions for the Navier-Stokes-Maxwell System , 2011, SIAM J. Math. Anal..

[26]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[27]  Song Jiang,et al.  The Convergence of the Navier–Stokes–Poisson System to the Incompressible Euler Equations , 2006 .

[28]  Yue-Jun Peng,et al.  Asymptotic behavior of global smooth solutions for full compressible Navier–Stokes–Maxwell equations , 2014 .

[29]  On the existence of solutions to the Navier–Stokes–Poisson equations of a two‐dimensional compressible flow , 2007 .

[30]  Asymptotic stability of stationary solutions for the non-isentropic Euler-Maxwell system (Mathematical Analysis in Fluid and Gas Dynamics) , 2014 .

[31]  Changjiang Zhu,et al.  Darcy's law and diffusion for a two-fluid Euler-Maxwell system with dissipation , 2014, 1403.2528.

[32]  Renjun Duan Global Smooth Flows for the Compressible Euler-Maxwell System: Relaxation Case , 2010, 1006.3606.

[33]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[34]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .