The effects of internal forces and membrane heterogeneity on three-dimensional cell shapes

[1]  Jay A. Stotsky,et al.  How surrogates for cortical forces determine cell shape , 2022, International Journal of Non-Linear Mechanics.

[2]  A. Iglič,et al.  On the Role of Curved Membrane Nanodomains and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding , 2021, International journal of molecular sciences.

[3]  W. Góźdź,et al.  Shape Transformations of Vesicles Induced by Their Adhesion to Flat Surfaces , 2020, ACS omega.

[4]  Nicolas L. Fawzi,et al.  Membrane bending by protein phase separation , 2020, Proceedings of the National Academy of Sciences.

[5]  A. Iglič,et al.  Normal red blood cells’ shape stabilized by membrane’s in-plane ordering , 2019, Scientific Reports.

[6]  H G Othmer,et al.  Eukaryotic cell dynamics from crawlers to swimmers , 2018, Wiley interdisciplinary reviews. Computational molecular science.

[7]  Shawn W. Walker,et al.  FELICITY: A Matlab/C++ Toolbox for Developing Finite Element Methods and Simulation Modeling , 2018, SIAM J. Sci. Comput..

[8]  P. Monzo,et al.  Membrane tension: A challenging but universal physical parameter in cell biology. , 2017, Seminars in cell & developmental biology.

[9]  H. Othmer,et al.  Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells , 2017, bioRxiv.

[10]  Guillaume Charras,et al.  Actin cortex architecture regulates cell surface tension , 2017, Nature Cell Biology.

[11]  S. Gekle,et al.  Theory and algorithms to compute Helfrich bending forces: a review , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Konstantinos Konstantopoulos,et al.  Cancer cell motility: lessons from migration in confined spaces , 2016, Nature Reviews Cancer.

[13]  G. Voth,et al.  How curvature-generating proteins build scaffolds on membrane nanotubes , 2016, Proceedings of the National Academy of Sciences.

[14]  A. Callan-Jones,et al.  Physical basis of some membrane shaping mechanisms , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Darren Engwirda,et al.  Conforming restricted Delaunay mesh generation for piecewise smooth complexes , 2016, ArXiv.

[16]  Alba Diz-Muñoz,et al.  Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration , 2016, PLoS biology.

[17]  G. Charras,et al.  Actin kinetics shapes cortical network structure and mechanics , 2016, Science Advances.

[18]  Ronald Rice,et al.  Mechanics of the Cell , 2016 .

[19]  H. Othmer,et al.  Computational analysis of amoeboid swimming at low Reynolds number , 2015, Journal of mathematical biology.

[20]  P. Sens,et al.  Model for probing membrane-cortex adhesion by micropipette aspiration and fluctuation spectroscopy. , 2015, Biophysical journal.

[21]  M. Kozlov,et al.  Front-to-rear membrane tension gradient in rapidly moving cells. , 2015, Biophysical journal.

[22]  E. Boucrot,et al.  Membrane curvature at a glance , 2015, Journal of Cell Science.

[23]  G. Charras,et al.  Cell mechanics: Hydraulic cracking. , 2015, Nature materials.

[24]  Andrew Callan-Jones,et al.  Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells , 2015, Cell.

[25]  M. Welch,et al.  Cell Migration, Freshly Squeezed , 2015, Cell.

[26]  Monika Ritsch-Marte,et al.  Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility , 2015, Cell.

[27]  Guillaume Charras,et al.  Cellular Control of Cortical Actin Nucleation , 2014, Current Biology.

[28]  Harald Sontheimer,et al.  A neurocentric perspective on glioma invasion , 2014, Nature Reviews Neuroscience.

[29]  Z. Ou-Yang,et al.  Recent theoretical advances in elasticity of membranes following Helfrich's spontaneous curvature model. , 2014, Advances in colloid and interface science.

[30]  P. Renteln Manifolds, Tensors, and Forms: An Introduction for Mathematicians and Physicists , 2013 .

[31]  Vivaldo Moura-Neto,et al.  Membrane Elastic Properties and Cell Function , 2013, PloS one.

[32]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[33]  Maryna Kapustina,et al.  Compression and dilation of the membrane-cortex layer generates rapid changes in cell shape , 2013, The Journal of cell biology.

[34]  Guillaume Charras,et al.  Actin cortex mechanics and cellular morphogenesis. , 2012, Trends in cell biology.

[35]  Christopher J. Ryan,et al.  Membrane bending by protein–protein crowding , 2012, Nature Cell Biology.

[36]  Martin Bergert,et al.  Cell mechanics control rapid transitions between blebs and lamellipodia during migration , 2012, Proceedings of the National Academy of Sciences.

[37]  Masao Doi,et al.  Onsager’s variational principle in soft matter , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  O. Bénichou,et al.  Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. , 2010, Biophysical journal.

[39]  Ricardo H. Nochetto,et al.  Geometrically Consistent Mesh Modification , 2010, SIAM J. Numer. Anal..

[40]  M. Bretscher,et al.  Dictyostelium amoebae and neutrophils can swim , 2010, Proceedings of the National Academy of Sciences.

[41]  Ricardo H. Nochetto,et al.  Parametric FEM for geometric biomembranes , 2010, J. Comput. Phys..

[42]  D. Sasaki,et al.  Steric confinement of proteins on lipid membranes can drive curvature and tubulation , 2010, Proceedings of the National Academy of Sciences.

[43]  Kinneret Keren,et al.  The Shape of Motile Cells , 2009, Current Biology.

[44]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[45]  Guillaume Charras,et al.  Blebs lead the way: how to migrate without lamellipodia , 2008, Nature Reviews Molecular Cell Biology.

[46]  Julie A. Theriot,et al.  Mechanism of shape determination in motile cells , 2008, Nature.

[47]  M. Sixt,et al.  Rapid leukocyte migration by integrin-independent flowing and squeezing , 2008, Nature.

[48]  Yajun Yin,et al.  Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes. , 2005, Journal of biomechanics.

[49]  D. Hammer,et al.  Effect of bilayer thickness on membrane bending rigidity. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[50]  J. Santiago,et al.  Deformations of the geometry of lipid vesicles , 2002, cond-mat/0212118.

[51]  P. Fey,et al.  Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity during Dictyostelium chemotaxis. , 2002, Journal of cell science.

[52]  Ricardo Cortez,et al.  The Method of Regularized Stokeslets , 2001, SIAM J. Sci. Comput..

[53]  J. Dai,et al.  Membrane tether formation from blebbing cells. , 1999, Biophysical journal.

[54]  Seifert,et al.  Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[55]  W. Helfrich,et al.  Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. , 1989, Physical review. A, General physics.

[56]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[57]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[58]  Ricardo H. Nochetto,et al.  Dynamics of Biomembranes: Effect of the Bulk Fluid , 2011 .

[59]  R. Hochmuth,et al.  Micropipette aspiration of living cells. , 2000, Journal of biomechanics.

[60]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[61]  J. Shao,et al.  Deformation and flow of membrane into tethers extracted from neuronal growth cones. , 1996, Biophysical journal.

[62]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.