Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments

Real-time dynamic simulation of large, realistic and complexmultibody systems is essential in developing modern technologies such asvirtual prototyping, man-in-the-loop simulators and intelligent vehiclecontrol systems. In order to achieve real-time performance, currentcommercial codes require the use of large costly computers, thuslimiting the number of potential users.This paper shows thatreal-time can be achieved on medium-size workstations if, on the onehand, an adequate combination of modeling, dynamic formulation, andnumerical integration scheme is selected and, on the other hand,advantage is taken of sparse matrix technology and parallel computing. Astudy of space-state and descriptor methods involving the dynamics of awhole vehicle model is carried out and in conclusion, two methods areproposed as the best candidates for real-time simulation.