Design and implementation of high efficiency non-isolated bidirectional zero voltage transition pulse width modulated DC–DC converters

[1]  Abraham Pressman,et al.  Switching Power Supply Design , 1997 .

[2]  Dehong Xu,et al.  Actively clamped bidirectional flyback converter , 2000, IEEE Trans. Ind. Electron..

[3]  H. Wagner,et al.  Energy yield ratio and cumulative energy demand for wind energy converters , 2004 .

[4]  Aymeric Rousseau,et al.  Fuel economy of hybrid fuel-cell vehicles , 2005 .

[5]  A.F. Bakan,et al.  A novel ZVT-ZCT PWM DC-DC converter , 2004, 2005 European Conference on Power Electronics and Applications.

[6]  A. Rajendra Prasad,et al.  Optimization of integrated photovoltaic–wind power generation systems with battery storage , 2006 .

[7]  Ehsan Adib,et al.  A bidirectional soft switched ultracapacitor interface circuit for hybrid electric vehicles , 2008 .

[8]  Ehsan Adib,et al.  Soft switching bidirectional DCDC converter for ultracapacitorbatteries interface , 2009 .

[9]  Kwang-Heon Kim,et al.  Zero-current soft-switching bidirectional DC-DC converter for high efficiency DC uninterruptible power supply , 2009, INTELEC 2009 - 31st International Telecommunications Energy Conference.

[10]  H. Farzanehfard,et al.  A bidirectional Zero Voltage Transition converter with coupled inductors , 2010, 2010 IEEE International Conference on Power and Energy.

[11]  Xavier Roboam,et al.  Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation , 2010 .

[12]  Ahmad Saudi Samosir,et al.  Implementation of Dynamic Evolution Control of Bidirectional DC–DC Converter for Interfacing Ultracapacitor Energy Storage to Fuel-Cell System , 2010, IEEE Transactions on Industrial Electronics.

[13]  Luis M. Fernández,et al.  Energy Management System of Fuel-Cell-Battery Hybrid Tramway , 2010, IEEE Transactions on Industrial Electronics.

[14]  Sun Hui,et al.  Hydraulic/electric synergy system (HESS) design for heavy hybrid vehicles , 2010 .

[15]  Joao P. S. Catalao,et al.  Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation , 2010 .

[16]  Joao P. S. Catalao,et al.  Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems , 2011 .

[17]  Juha Kiviluoma,et al.  Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a sys , 2011 .

[18]  Edris Pouresmaeil,et al.  Multilevel converters control for renewable energy integration to the power grid , 2011 .

[19]  Andreas Sumper,et al.  Analysis of a multi turbine offshore wind farm connected to a single large power converter operated , 2011 .

[20]  Enrico Tironi,et al.  A statistical approach to electrical storage sizing with application to the recovery of braking ener , 2011 .

[21]  Olivier Bethoux,et al.  New silicon thin-film technology associated with original DC–DC converter: An economic alternative way to improve photovoltaic systems efficiencies , 2011 .

[22]  Hongwen He,et al.  Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles , 2012 .