Thin‐film silicon solar cell technology

This paper describes the use, within p–i–n‐ and n–i–p‐type solar cells, of hydrogenated amorphous silicon (a‐Si:H) and hydrogenated microcrystalline silicon (μc‐Si:H) thin films (layers), both deposited at low temperatures (200°C) by plasma‐assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i‐layers are described. These properties are linked to the microstructure and hence to the i‐layer deposition rate, that in turn, affects throughput in production. The importance of contact and reflection layers in achieving low electrical and optical losses is explained, particularly for the superstrate case. Especially the required properties for the transparent conductive oxide (TCO) need to be well balanced in order to provide, at the same time, for high electrical conductivity (preferably by high electron mobility), low optical absorption and surface texture (for low optical losses and pronounced light trapping). Single‐junction amorphous and microcrystalline p–i–n‐type solar cells, as fabricated so far, are compared in their key parameters (Jsc, FF, Voc) with the [theoretical] limiting values. Tandem and multijunction cells are introduced; the μc‐Si: H/a‐Si: H or [micromorph] tandem solar cell concept is explained in detail, and recent results obtained here are listed and commented. Factors governing the mass‐production of thin‐film silicon modules are determined both by inherent technical reasons, described in detail, and by economic considerations. The cumulative effect of these factors results in distinct efficiency reductions from values of record laboratory cells to statistical averages of production modules. Finally, applications of thin‐film silicon PV modules, especially in building‐integrated PV (BIPV) are shown. In this context, the energy yields of thin‐film silicon modules emerge as a valuable gauge for module performance, and compare very favourably with those of other PV technologies. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  M. Vaněček,et al.  Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si:H, μc-Si:H and `micromorph tandem' solar cells , 2004 .

[2]  A. Matsuda,et al.  High rate growth of microcrystalline silicon films assisted by high density plasma , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[3]  Influence of the crystalline fraction on the stability of nanocrystalline silicon solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[4]  A. Matsuda,et al.  Thin film silicon solar cells on liquid crystal polymer substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[5]  Y. Okada,et al.  Microcrystalline-Si solar cells by newly developed novel PECVD method at high deposition rate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[6]  C. Droz,et al.  Electrical and microstructural characterisation of microcrystalline silicon layers and solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[7]  S. Guha,et al.  On the mechanism of light-induced open-circuit voltage increase in mixed-phase hydrogenated silicon solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[8]  K. Murata,et al.  Extremely high-rate deposition of silicon thin films prepared by atmospheric plasma CVD method with a rotary electrode , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[9]  A. Banerjee,et al.  Microcrystalline silicon solar cells made using RF, MVHF, and microwave at various deposition rates , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[10]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[11]  Makoto Konagai,et al.  2-Step Growth Method and Microcrystalline Silicon Thin Film Solar Cells Prepared by Hot Wire Cell Method , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[12]  P. Lechner,et al.  Thin film solar modules based on amorphous and microcrystalline silicon , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[13]  G. Jongerden Monolithically series integrated flexible PV modules manufactured on commodity polymer substrates , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[14]  T. Moriarty,et al.  High-efficiency amorphous and "micromorph" silicon solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[15]  A. Shah,et al.  Enhanced light trapping in thin film silicon solar cells deposited on PET and glass , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[16]  Bernd Rech,et al.  Light trapping and optical losses in microcrystalline Si and micromorph solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[17]  Michael Grimm,et al.  Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells , 2003 .

[18]  L. Feitknecht,et al.  Microstructure and open-circuit voltage of n−i−p microcrystalline silicon solar cells , 2003 .

[19]  Koeng Su Lim,et al.  Thermal annealing characteristics of amorphous silicon-based solar cells incorporating stable protocrystalline silicon and unstable microcrystalline silicon at the onset of a microcrystalline regime , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[20]  Arvind Shah,et al.  Light trapping in amorphous silicon solar cells on plastic substrates , 2003 .

[21]  S. Guha,et al.  Amorphous silicon alloy materials, cells, and modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[22]  Enhanced light-trapping for micromorph tandem solar cells by LP-CVD ZnO , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[23]  T. Suezaki,et al.  High efficiency thin film silicon solar cell and module , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[24]  Brent P. Nelson,et al.  Amorphous silicon films and solar cells deposited by HWCVD at ultra-high deposition rates , 2002 .

[25]  L. Feitknecht,et al.  Influence of Substrate on the Microstructure of Microcrystalline Silicon Layers and Cells , 2002 .

[26]  J. Müller,et al.  Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition , 2002 .

[27]  Nicolas Wyrsch,et al.  Microcrystalline silicon and ‘micromorph’ tandem solar cells , 2002 .

[28]  Bernd Rech,et al.  High Efficiency Thin Film Solar Cells with Intrinsic Microcrystalline Silicon Prepared by Hot Wire CVD , 2002 .

[29]  J. Springer,et al.  Improved Optical Model for Thin-film Silicon Solar Cells , 2002 .

[30]  J. Meier,et al.  Progress in Amorphous and Micromorph Silicon Solar Cells , 2002 .

[31]  Large area mid-frequency magnetron sputtered ZnO films as substrates for silicon thin-film solar cells , 2001 .

[32]  Efficiency enhancement of amorphous silicon p-i-n solar cells by LP-CVD ZnO , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[33]  David L. Young,et al.  Characterization of Transparent Conducting Oxides , 2000 .

[34]  A. Fejfar,et al.  Optical absorption and light scattering in microcrystalline silicon thin films and solar cells , 2000 .

[35]  N. Wyrsch,et al.  Electronic Transport in Hydrogenated Microcrystalline Silicon: Similarities with Amorphous Silicon , 2000 .

[36]  Arvind Shah,et al.  Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution , 2000 .

[37]  H. Shirai,et al.  Fast Deposition of Microcrystalline Silicon Films Using The High-Density Microwave Plasma Utilizing a Spokewise Antenna , 2000 .

[38]  A. Shah,et al.  Microstructure of Microcrystalline Silicon Solar Cells Prepared by Very High Frequency Glow-Discharge , 2000 .

[39]  N. Wyrsch,et al.  "Development of More Stable Amorphous Silicon Thin Film Solar Cells Deposited at ""Moderately High"" Temperature" , 2000 .

[40]  S. Guha,et al.  Science and technology of amorphous silicon alloy photovoltaics , 1999 .

[41]  A. Shah,et al.  Fast Deposition of a-Si:H Layers and Solar Cells in a Large-Area (40 x40 cm2) VHF-GD Reactor , 1999 .

[42]  O. Vetterl,et al.  Morphological and crystallographic defect properties of microcrystalline silicon : a comparison between different growth modes , 1998 .

[43]  J. Merten,et al.  Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules , 1998 .

[44]  L. Feitknecht,et al.  Microcrystalline and Micromorph Thin-Film Silicon Solar Cells , 1998 .

[45]  A. Shah,et al.  Microcrystalline Single-Junction and Micromorph Tandem Thin Film Silicon Solar Cells , 1998 .

[46]  B. Rech,et al.  Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[47]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .

[48]  Herbert Keppner,et al.  Device grade microcrystalline silicon owing to reduced oxygen contamination , 1996 .

[49]  Steven A. Martens,et al.  LIGHTWEIGHT, FLEXIBLE, MONOLITHIC ON CONTINOUS POLYMER SUBSTRATES THIN-FILM AMORPHOUS SILICAN MODULES , 1996 .

[50]  Ch. Hof,et al.  MOBILITY LIFETIME PRODUCT : A TOOL FOR CORRELATING A-SI:H FILM PROPERTIES AND SOLAR CELL PERFORMANCES , 1996 .

[51]  Seiichi Kiyama,et al.  Efficiency evaluation of a-Si and c-Si solar cells for outdoor use , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[52]  Ch. Hof,et al.  The "micromorph" solar cell: extending a-Si:H technology towards thin film crystalline silicon , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[53]  Ch. Hof,et al.  On the Way towards High-Efficiency Thin Film Silicon Solar Cells by the "Micromorph" Concept , 1996 .

[54]  Optical and Electrical Properties of Undoped Microcrystalline Silicon Deposited by the VHF-GD with Different Dilutions of Silane in Hydrogen , 1996 .

[55]  A. Shah,et al.  Origins of atmospheric contamination in amorphous silicon prepared by very high frequency (70 MHz) glow discharge , 1995 .

[56]  F. Finger,et al.  Improved Ambipolar Diffusion Length in a-Si1-xGex:H Alloys for Multi-Junction Solar Cells , 1995 .

[57]  J. Meier,et al.  Origin and Incorporation Mechanism for Oxygen Contaminants in a-Si:H and μc-Si:H Films Prepared by the Very High Frequency (70 MHz) Glow Discharge Technique , 1995 .

[58]  A. Shah,et al.  Intrinsic microcrystalline silicon (/spl mu/c-Si:H)-a promising new thin film solar cell material , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[59]  Arvind Shah,et al.  Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? , 1994 .

[60]  S. Jones,et al.  The effects of Ar and He dilution of silane plasmas on the microstructure of a-Si:H detected by small-angle X-ray scattering , 1993 .

[61]  Y. Ichikawa,et al.  Large-area amorphous silicon solar cells with high stabilized efficiency and their fabrication technology , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[62]  C. Lim,et al.  An optimum design of a a-Sipoly-Si tandem solar cell , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[63]  Toshiaki Sasaki,et al.  12% two-stacked a-Si:H tandem cells with a new p-layer structure , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[64]  Nelson,et al.  Characterization of microvoids in device-quality hydrogenated amorphous silicon by small-angle x-ray scattering and infrared measurements. , 1989, Physical review. B, Condensed matter.

[65]  Stanford R. Ovshinsky,et al.  Band‐gap profiling for improving the efficiency of amorphous silicon alloy solar cells , 1989 .

[66]  M. Wertheimer,et al.  Amorphous silicon for photovoltaics produced by new microwave plasma-deposition techniques , 1985 .

[67]  Sigurd Wagner,et al.  Carrier lifetime model for the optical degradation of amorphous silicon solar cells , 1985 .

[68]  Sigurd Wagner,et al.  A Carrier Lifetime Model for the Optical Degradation of Amorphous Silicon Solar Cells , 1985 .

[69]  W. Beyer,et al.  Reinterpretation of the silicon-hydrogen stretch frequencies in amorphous silicon , 1983 .

[70]  Anthony W. Catalano,et al.  Attainment of 10% conversion efficiency in amorphous silicon solar cells , 1982 .

[71]  G. Willeke,et al.  ELECTRONIC PROPERTIES OF MICROCRYSTALLINE SILICON FILMS PREPARED IN A GLOW DISCHARGE PLASMA , 1981 .

[72]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[73]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[74]  D. Staebler,et al.  Properties of amorphous silicon and a-Si solar cells , 1977 .

[75]  W. Spear,et al.  Electronic properties of substitutionally doped amorphous Si and Ge , 1976 .

[76]  R. Chittick,et al.  The Preparation and Properties of Amorphous Silicon , 1969 .

[77]  S. Vepřek,et al.  The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport , 1968 .