Ensemble Kalman Filter Analyses of the 29–30 May 2004 Oklahoma Tornadic Thunderstorm Using One- and Two-Moment Bulk Microphysics Schemes, with Verification against Polarimetric Radar Data

AbstractThe performance of ensemble Kalman filter (EnKF) analysis is investigated for the tornadic supercell on 29–30 May 2004 in Oklahoma using a dual-moment (DM) bulk microphysics scheme in the Advanced Regional Prediction System (ARPS) model. The comparison of results using single-moment (SM) and DM microphysics schemes evaluates the benefits of using one over the other during storm analysis. Observations from a single operational Weather Surveillance Radar-1988 Doppler (WSR-88D) are assimilated and a polarimetric WSR-88D in Norman, Oklahoma (KOUN), is used to assess the quality of the analysis.Analyzed reflectivity and radial velocity in the SM and DM experiments compare favorably with independent radar observations in general. However, simulated polarimetric signatures obtained from analyses using a DM scheme agree significantly better with polarimetric signatures observed by KOUN in terms of the general structure, location, and intensity of the signatures than those generated from analyses using an ...

[1]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[2]  Alan Shapiro,et al.  Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm , 2002 .

[3]  Joanne Simpson,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations , 1995 .

[4]  Xiang-Yu Huang,et al.  Variational Analysis Using Spatial Filters , 2000 .

[5]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[6]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[7]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[8]  Mingjing Tong,et al.  Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model : OSS experiments , 2005 .

[9]  J. Testud,et al.  Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part I: Filtering, Interpolating and Differentiating the Raw Data , 1983 .

[10]  Jidong Gao,et al.  The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation , 2003 .

[11]  K. Droegemeier,et al.  Multiresolution Ensemble Forecasts of an Observed Tornadic Thunderstorm System. Part I: Comparsion of Coarse- and Fine-Grid Experiments , 2006 .

[12]  Francis W. Murray,et al.  Ice-Bearing Cumulus Cloud Evolution: Numerical Simulation and General Comparison Against Observations. , 1976 .

[13]  Jothiram Vivekanandan,et al.  Rigorous Approach to Polarimetric Radar Modeling of Hydrometeor Orientation Distributions , 1991 .

[14]  M. Xue,et al.  3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact , 2006 .

[15]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part IV: Sensitivity Experiments , 2006 .

[16]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter , 2005 .

[17]  Louis J. Wicker,et al.  Ensemble Kalman Filter Assimilation of Radar Observations of the 8 May 2003 Oklahoma City Supercell: Influences of Reflectivity Observations on Storm-Scale Analyses , 2011 .

[18]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[19]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[20]  Guifu Zhang,et al.  State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data , 2010 .

[21]  Louis J. Wicker,et al.  Impact of the Environmental Low-Level Wind Profile on Ensemble Forecasts of the 4 May 2007 Greensburg, Kansas, Tornadic Storm and Associated Mesocyclones , 2012 .

[22]  D. Burgess,et al.  A Dual-Polarization-Radar-Based Assessment of the 8 May 2003 Oklahoma City Area Tornadic Supercell , 2008 .

[23]  Jerry M. Straka,et al.  TELEX: The Thunderstorm Electrification and Lightning Experiment , 2008 .

[24]  K. Droegemeier,et al.  Objective Verification of the SAMEX ’98 Ensemble Forecasts , 2001 .

[25]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[26]  Louis J. Wicker,et al.  Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments , 2004 .

[27]  Guifu Zhang,et al.  Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables , 2008 .

[28]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[29]  C. Snyder,et al.  A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses , 2009 .

[30]  Guifu Zhang,et al.  Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme , 2010 .

[31]  Yong-Run Guo,et al.  A Three-demiensional Variational (3DVAR) Data Assimilation System for Use With MM5 , 2003 .

[32]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[33]  C. Snyder,et al.  Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter , 2003 .

[34]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments , 2008 .

[35]  Mingjing Tong,et al.  An OSSE Framework Based on the Ensemble Square Root Kalman Filter for Evaluating the Impact of Data from Radar Networks on Thunderstorm Analysis and Forecasting , 2006 .

[36]  Young-Sun Jung STATE AND PARAMETER ESTIMATION USING POLARIMETRIC RADAR DATA AND AN ENSEMBLE KALMAN FILTER , 2008 .

[37]  C. Knight,et al.  Airflow and Hail Growth in a Severe Northern High Plains Supercell , 1988 .

[38]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[39]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[40]  G. Evensen,et al.  Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .

[41]  M. Xue,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications , 2001 .

[42]  Jerry M. Straka,et al.  Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part II: Impact of Polarimetric Data on Storm Analysis , 2008 .

[43]  Ming Xue,et al.  Retrieval of Moisture from Slant-Path Water Vapor Observations of a Hypothetical GPS Network Using a Three-Dimensional Variational Scheme with Anisotropic Background Error , 2006 .

[44]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[45]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[46]  K. Droegemeier,et al.  The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification , 2000 .

[47]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[48]  Ming Xue,et al.  Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms , 2008 .

[49]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[50]  Alexander V. Ryzhkov,et al.  The Impact of Evaporation on Polarimetric Characteristics of Rain: Theoretical Model and Practical Implications , 2009 .

[51]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[52]  Alexander V. Ryzhkov,et al.  Storm-Relative Helicity Revealed from Polarimetric Radar Measurements , 2009 .

[53]  Alexander V. Ryzhkov,et al.  Polarimetric Signatures in Supercell Thunderstorms , 2008 .

[54]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[55]  Louis J. Wicker,et al.  Additive Noise for Storm-Scale Ensemble Data Assimilation , 2009 .

[56]  Daniel T. Dawson,et al.  Comparison of Evaporation and Cold Pool Development between Single-moment and Multi-moment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms , 2009 .

[57]  Mingjing Tong Ensemble Kalman filter assimilation of Doppler radar data for the initialization and prediction of convective storms. , 2006 .

[58]  N. Roberts,et al.  Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances , 2003 .

[59]  Francesc Junyent,et al.  Close-Range Observations of Tornadoes in Supercells Made with a Dual-Polarization, X-Band, Mobile Doppler Radar , 2007 .