Two-step wavelet-based estimation for Gaussian mixed fractional processes
暂无分享,去创建一个
[1] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[2] M. Taqqu. Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.
[3] R. Dobrushin,et al. Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .
[4] M. Taqqu. Convergence of integrated processes of arbitrary Hermite rank , 1979 .
[5] C. Granger,et al. AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .
[6] V. K. Rohatgi,et al. Operator self similar stochastic processes in Rd , 1981 .
[7] J. Mason,et al. Operator-self-similar processes in a finite-dimensional space , 1982 .
[8] P. Major,et al. Central limit theorems for non-linear functionals of Gaussian fields , 1983 .
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] M. Taqqu,et al. Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .
[11] R. Dahlhaus. Efficient parameter estimation for self-similar processes , 1989, math/0607078.
[12] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[13] Patrick Flandrin,et al. Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.
[14] Gregory W. Wornell,et al. Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..
[15] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[16] Richard A. Davis,et al. Time Series: Theory and Methods (2nd ed.). , 1992 .
[17] Elias Masry,et al. The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.
[18] M. Maejima,et al. Operator-self-similar stable processes , 1994 .
[19] Jan Beran,et al. Statistics for long-memory processes , 1994 .
[20] Mason,et al. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.
[21] P. Robinson. Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .
[22] P. Robinson. Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .
[23] Yuzo Hosoya. The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence☆ , 1996 .
[24] Yuzo Hosoya,et al. A limit theory for long-range dependence and statistical inference on related models , 1997 .
[25] Eric Moulines,et al. A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..
[26] CONSISTENCY OF THE AVERAGED CROSS‐PERIODOGRAM IN LONG MEMORY SERIES , 1997 .
[27] Jean-Francois Cardoso,et al. Blind signal separation: statistical principles , 1998, Proc. IEEE.
[28] Patrice Abry,et al. Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.
[29] Domenico Marinucci,et al. Weak convergence of multivariate fractional processes , 2000 .
[30] S. Mallat. A wavelet tour of signal processing , 1998 .
[31] Patrice Abry,et al. A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.
[32] P. M. Robinsonb,et al. Semiparametric fractional cointegration analysis , 1999 .
[33] A. Walden,et al. Wavelet Methods for Time Series Analysis , 2000 .
[34] Peter Guttorp,et al. Wavelet analysis of covariance with application to atmospheric time series , 2000 .
[35] Dinh-Tuan Pham,et al. Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..
[36] Yoshihiro Yajima. Determination of Cointegrating Rank in Fractional Systems , 2001 .
[37] D. Marinucci,et al. Semiparametric Fractional Cointegration Analysis , 2001 .
[38] J. Coeurjolly,et al. Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .
[39] Eric Moreau,et al. A generalization of joint-diagonalization criteria for source separation , 2001, IEEE Trans. Signal Process..
[40] Vladas Pipiras,et al. Estimation of the self-similarity parameter in linear fractional stable motion , 2002, Signal Process..
[41] Jean-Marc Bardet,et al. Statistical study of the wavelet analysis of fractional Brownian motion , 2002, IEEE Trans. Inf. Theory.
[42] J. Mason,et al. Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields , 2002 .
[43] Patrice Abry,et al. Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data , 2002 .
[44] Arie Yeredor,et al. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation , 2002, IEEE Trans. Signal Process..
[45] Katsumi Shimotsu,et al. Gaussian semiparametric estimation of multivariate fractionally integrated processes , 2007 .
[46] Patrick Cheridito,et al. Fractional Ornstein-Uhlenbeck processes , 2003 .
[47] Lucas C. Parra,et al. Blind Source Separation via Generalized Eigenvalue Decomposition , 2003, J. Mach. Learn. Res..
[48] James V. Stone. Independent Component Analysis: A Tutorial Introduction , 2007 .
[49] Seungjin Choi. Blind Source Separation and Independent Component Analysis : A Review , 2004 .
[50] Andreas Ziehe,et al. A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation , 2004, J. Mach. Learn. Res..
[51] François Roueff,et al. On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.
[52] Soo-Young Lee. Blind Source Separation and Independent Component Analysis: A Review , 2005 .
[53] Peter Guttorp,et al. Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes , 2005, IEEE Transactions on Signal Processing.
[54] Henghsiu Tsai,et al. Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes , 2005 .
[55] Barak A. Pearlmutter,et al. Survey of sparse and non‐sparse methods in source separation , 2005, Int. J. Imaging Syst. Technol..
[56] Mark M. Meerschaert,et al. Operator scaling stable random fields , 2006 .
[57] Simon J. Godsill,et al. A Bayesian Approach for Blind Separation of Sparse Sources , 2006, IEEE Transactions on Audio, Speech, and Language Processing.
[58] Wilfredo Palma,et al. Long-memory time series , 2007 .
[59] Richard L. Smith,et al. Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models , 2007 .
[60] P. Robinson. Multiple Local Whittle Estimation in Stationary Systems , 2007, 0811.0948.
[61] W. Palma. Long-Memory Time Series: Theory and Methods , 2007 .
[62] Eric Moulines,et al. Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context , 2007 .
[63] Eric Moulines,et al. A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series , 2008 .
[64] G. Pap,et al. Parameter estimation of selfsimilarity exponents , 2008 .
[65] S. C. Kou,et al. Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins , 2008, 0807.3910.
[66] Chae Young Lim,et al. Local Whittle estimator for anisotropic random fields , 2009, J. Multivar. Anal..
[67] Yimin Xiao. Sample Path Properties of Anisotropic Gaussian Random Fields , 2009 .
[68] Canada.,et al. Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.
[69] F. Nielsen. Local Whittle Estimation of Multivariate Fractionally Integrated Processes , 2009 .
[70] Patrice Abry,et al. Testing fractal connectivity in multivariate long memory processes , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.
[71] Vince D. Calhoun,et al. Joint Blind Source Separation by Multiset Canonical Correlation Analysis , 2009, IEEE Transactions on Signal Processing.
[72] Gordon Bell,et al. Beyond the Data Deluge , 2009, Science.
[73] G. Didier,et al. Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions , 2011, Journal of Theoretical Probability.
[74] S. Achard,et al. Wavelet analysis of the multivariate fractional Brownian motion , 2010, 1007.2109.
[75] M. Nielsen,et al. Fully Modified Narrow-Band Least Squares Estimation of Weak Fractional Cointegration , 2011 .
[76] P. Robinson,et al. Semiparametric inference in multivariate fractionally cointegrated systems , 2010 .
[77] Pierre Comon,et al. Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .
[78] Anne Philippe,et al. Basic properties of the Multivariate Fractional Brownian Motion , 2010, 1007.0828.
[79] Jean-Marc Bardet,et al. A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter , 2008, 0811.2664.
[80] G. Didier,et al. Integral representations and properties of operator fractional Brownian motions , 2011, 1102.1822.
[81] Pierre-Olivier Amblard,et al. Identification of the Multivariate Fractional Brownian Motion , 2011, IEEE Transactions on Signal Processing.
[82] Yimin Xiao,et al. Multivariate operator-self-similar random fields , 2011, 1104.0059.
[83] M. Taqqu,et al. Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes , 2011, 1105.1011.
[84] Frank Nielsen. Local Whittle estimation of multi‐variate fractionally integrated processes , 2011 .
[85] Clifford M. Hurvich,et al. The averaged periodogram estimator for a power law in coherency , 2011 .
[86] Béatrice Vedel,et al. Explicit constructions of operator scaling Gaussian fields , 2011 .
[87] Katsumi Shimotsu. Exact local Whittle estimation of fractionally cointegrated systems , 2012 .
[88] Scott A. McKinley,et al. Statistical challenges in microrheology , 2012, 1201.5984.
[89] J. Hualde. A simple test for the equality of integration orders , 2013 .
[90] Jan Beran,et al. Long-Memory Processes: Probabilistic Properties and Statistical Methods , 2013 .
[91] M. Clausel,et al. An optimality result about sample path properties of Operator Scaling Gaussian Random Fields , 2013, 1302.0818.
[92] Scott A. McKinley,et al. Model Comparison and Assessment for Single Particle Tracking in Biological Fluids , 2014, 1407.5962.
[93] Jean-Marc Bardet,et al. Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process , 2013, J. Multivar. Anal..
[94] C. L. Philip Chen,et al. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data , 2014, Inf. Sci..
[95] S. Achard,et al. Multivariate Wavelet Whittle Estimation in Long‐range Dependence , 2014, 1412.0391.
[96] Asymptotic behavior of the quadratic variation of the sum of two Hermite processes of consecutive orders , 2014, 1402.1710.
[97] D. Surgailis,et al. Scaling transition for long-range dependent Gaussian random fields , 2014, 1409.2830.
[98] David A. Benson,et al. Predicting flow and transport in highly heterogeneous alluvial aquifers , 2014 .
[99] G. Didier,et al. Wavelet estimation for operator fractional Brownian motion , 2015, 1501.06094.
[100] V. Pipiras,et al. DEFINITIONS AND REPRESENTATIONS OF MULTIVARIATE LONG‐RANGE DEPENDENT TIME SERIES , 2015 .
[101] M. Taqqu,et al. How the instability of ranks under long memory affects large-sample inference , 2016, 1610.00690.
[102] G. Didier,et al. Exponents of operator self-similar random fields , 2016, 1608.04650.
[103] Vladas Pipiras,et al. Domain and range symmetries of operator fractional Brownian fields , 2016, 1609.01007.
[104] Nelly Pustelnik,et al. Non-Linear Wavelet Regression and Branch & Bound Optimization for the Full Identification of Bivariate Operator Fractional Brownian Motion , 2016, IEEE Transactions on Signal Processing.
[105] Kensuke Fukuda,et al. Scaling in Internet Traffic: A 14 Year and 3 Day Longitudinal Study, With Multiscale Analyses and Random Projections , 2017, IEEE/ACM Transactions on Networking.
[106] G. Didier,et al. Multivariate Hadamard self-similarity: testing fractal connectivity , 2017, 1701.04366.
[107] Patrice Abry,et al. Wavelet eigenvalue regression for n-variate operator fractional Brownian motion , 2017, J. Multivar. Anal..
[108] Kung-Sik Chan,et al. Inference of Bivariate Long-memory Aggregate Time Series , 2018 .