Two-step wavelet-based estimation for Gaussian mixed fractional processes

A Gaussian mixed fractional process $$\{Y(t)\}_{t \in {\mathbb {R}}} = \{PX(t)\}_{t \in {\mathbb {R}}}$${Y(t)}t∈R={PX(t)}t∈R is a multivariate stochastic process obtained by pre-multiplying a vector of independent, Gaussian fractional process entries X by a nonsingular matrix P. It is interpreted that Y is observable, while X is a hidden process occurring in an (unknown) system of coordinates P. Mixed processes naturally arise as approximations to solutions of physically relevant classes of multivariate fractional stochastic differential equations under aggregation. We propose a semiparametric two-step wavelet-based method for estimating both the demixing matrix $$P^{-1}$$P-1 and the memory parameters of X. The asymptotic normality of the estimator is established both in continuous and discrete time. Monte Carlo experiments show that the estimator is accurate over finite samples, while being very computationally efficient. As an application, we model a bivariate time series of annual tree ring width measurements.

[1]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[2]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.

[3]  R. Dobrushin,et al.  Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .

[4]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[5]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[6]  V. K. Rohatgi,et al.  Operator self similar stochastic processes in Rd , 1981 .

[7]  J. Mason,et al.  Operator-self-similar processes in a finite-dimensional space , 1982 .

[8]  P. Major,et al.  Central limit theorems for non-linear functionals of Gaussian fields , 1983 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[11]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[12]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[13]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[14]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[15]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[16]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[17]  Elias Masry,et al.  The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.

[18]  M. Maejima,et al.  Operator-self-similar stable processes , 1994 .

[19]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[20]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[21]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[22]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[23]  Yuzo Hosoya The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence☆ , 1996 .

[24]  Yuzo Hosoya,et al.  A limit theory for long-range dependence and statistical inference on related models , 1997 .

[25]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[26]  CONSISTENCY OF THE AVERAGED CROSS‐PERIODOGRAM IN LONG MEMORY SERIES , 1997 .

[27]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[28]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[29]  Domenico Marinucci,et al.  Weak convergence of multivariate fractional processes , 2000 .

[30]  S. Mallat A wavelet tour of signal processing , 1998 .

[31]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[32]  P. M. Robinsonb,et al.  Semiparametric fractional cointegration analysis , 1999 .

[33]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[34]  Peter Guttorp,et al.  Wavelet analysis of covariance with application to atmospheric time series , 2000 .

[35]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[36]  Yoshihiro Yajima Determination of Cointegrating Rank in Fractional Systems , 2001 .

[37]  D. Marinucci,et al.  Semiparametric Fractional Cointegration Analysis , 2001 .

[38]  J. Coeurjolly,et al.  Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .

[39]  Eric Moreau,et al.  A generalization of joint-diagonalization criteria for source separation , 2001, IEEE Trans. Signal Process..

[40]  Vladas Pipiras,et al.  Estimation of the self-similarity parameter in linear fractional stable motion , 2002, Signal Process..

[41]  Jean-Marc Bardet,et al.  Statistical study of the wavelet analysis of fractional Brownian motion , 2002, IEEE Trans. Inf. Theory.

[42]  J. Mason,et al.  Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields , 2002 .

[43]  Patrice Abry,et al.  Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data , 2002 .

[44]  Arie Yeredor,et al.  Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation , 2002, IEEE Trans. Signal Process..

[45]  Katsumi Shimotsu,et al.  Gaussian semiparametric estimation of multivariate fractionally integrated processes , 2007 .

[46]  Patrick Cheridito,et al.  Fractional Ornstein-Uhlenbeck processes , 2003 .

[47]  Lucas C. Parra,et al.  Blind Source Separation via Generalized Eigenvalue Decomposition , 2003, J. Mach. Learn. Res..

[48]  James V. Stone Independent Component Analysis: A Tutorial Introduction , 2007 .

[49]  Seungjin Choi Blind Source Separation and Independent Component Analysis : A Review , 2004 .

[50]  Andreas Ziehe,et al.  A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation , 2004, J. Mach. Learn. Res..

[51]  François Roueff,et al.  On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.

[52]  Soo-Young Lee Blind Source Separation and Independent Component Analysis: A Review , 2005 .

[53]  Peter Guttorp,et al.  Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes , 2005, IEEE Transactions on Signal Processing.

[54]  Henghsiu Tsai,et al.  Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes , 2005 .

[55]  Barak A. Pearlmutter,et al.  Survey of sparse and non‐sparse methods in source separation , 2005, Int. J. Imaging Syst. Technol..

[56]  Mark M. Meerschaert,et al.  Operator scaling stable random fields , 2006 .

[57]  Simon J. Godsill,et al.  A Bayesian Approach for Blind Separation of Sparse Sources , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[58]  Wilfredo Palma,et al.  Long-memory time series , 2007 .

[59]  Richard L. Smith,et al.  Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models , 2007 .

[60]  P. Robinson Multiple Local Whittle Estimation in Stationary Systems , 2007, 0811.0948.

[61]  W. Palma Long-Memory Time Series: Theory and Methods , 2007 .

[62]  Eric Moulines,et al.  Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context , 2007 .

[63]  Eric Moulines,et al.  A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series , 2008 .

[64]  G. Pap,et al.  Parameter estimation of selfsimilarity exponents , 2008 .

[65]  S. C. Kou,et al.  Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins , 2008, 0807.3910.

[66]  Chae Young Lim,et al.  Local Whittle estimator for anisotropic random fields , 2009, J. Multivar. Anal..

[67]  Yimin Xiao Sample Path Properties of Anisotropic Gaussian Random Fields , 2009 .

[68]  Canada.,et al.  Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.

[69]  F. Nielsen Local Whittle Estimation of Multivariate Fractionally Integrated Processes , 2009 .

[70]  Patrice Abry,et al.  Testing fractal connectivity in multivariate long memory processes , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[71]  Vince D. Calhoun,et al.  Joint Blind Source Separation by Multiset Canonical Correlation Analysis , 2009, IEEE Transactions on Signal Processing.

[72]  Gordon Bell,et al.  Beyond the Data Deluge , 2009, Science.

[73]  G. Didier,et al.  Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions , 2011, Journal of Theoretical Probability.

[74]  S. Achard,et al.  Wavelet analysis of the multivariate fractional Brownian motion , 2010, 1007.2109.

[75]  M. Nielsen,et al.  Fully Modified Narrow-Band Least Squares Estimation of Weak Fractional Cointegration , 2011 .

[76]  P. Robinson,et al.  Semiparametric inference in multivariate fractionally cointegrated systems , 2010 .

[77]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[78]  Anne Philippe,et al.  Basic properties of the Multivariate Fractional Brownian Motion , 2010, 1007.0828.

[79]  Jean-Marc Bardet,et al.  A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter , 2008, 0811.2664.

[80]  G. Didier,et al.  Integral representations and properties of operator fractional Brownian motions , 2011, 1102.1822.

[81]  Pierre-Olivier Amblard,et al.  Identification of the Multivariate Fractional Brownian Motion , 2011, IEEE Transactions on Signal Processing.

[82]  Yimin Xiao,et al.  Multivariate operator-self-similar random fields , 2011, 1104.0059.

[83]  M. Taqqu,et al.  Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes , 2011, 1105.1011.

[84]  Frank Nielsen Local Whittle estimation of multi‐variate fractionally integrated processes , 2011 .

[85]  Clifford M. Hurvich,et al.  The averaged periodogram estimator for a power law in coherency , 2011 .

[86]  Béatrice Vedel,et al.  Explicit constructions of operator scaling Gaussian fields , 2011 .

[87]  Katsumi Shimotsu Exact local Whittle estimation of fractionally cointegrated systems , 2012 .

[88]  Scott A. McKinley,et al.  Statistical challenges in microrheology , 2012, 1201.5984.

[89]  J. Hualde A simple test for the equality of integration orders , 2013 .

[90]  Jan Beran,et al.  Long-Memory Processes: Probabilistic Properties and Statistical Methods , 2013 .

[91]  M. Clausel,et al.  An optimality result about sample path properties of Operator Scaling Gaussian Random Fields , 2013, 1302.0818.

[92]  Scott A. McKinley,et al.  Model Comparison and Assessment for Single Particle Tracking in Biological Fluids , 2014, 1407.5962.

[93]  Jean-Marc Bardet,et al.  Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process , 2013, J. Multivar. Anal..

[94]  C. L. Philip Chen,et al.  Data-intensive applications, challenges, techniques and technologies: A survey on Big Data , 2014, Inf. Sci..

[95]  S. Achard,et al.  Multivariate Wavelet Whittle Estimation in Long‐range Dependence , 2014, 1412.0391.

[96]  Asymptotic behavior of the quadratic variation of the sum of two Hermite processes of consecutive orders , 2014, 1402.1710.

[97]  D. Surgailis,et al.  Scaling transition for long-range dependent Gaussian random fields , 2014, 1409.2830.

[98]  David A. Benson,et al.  Predicting flow and transport in highly heterogeneous alluvial aquifers , 2014 .

[99]  G. Didier,et al.  Wavelet estimation for operator fractional Brownian motion , 2015, 1501.06094.

[100]  V. Pipiras,et al.  DEFINITIONS AND REPRESENTATIONS OF MULTIVARIATE LONG‐RANGE DEPENDENT TIME SERIES , 2015 .

[101]  M. Taqqu,et al.  How the instability of ranks under long memory affects large-sample inference , 2016, 1610.00690.

[102]  G. Didier,et al.  Exponents of operator self-similar random fields , 2016, 1608.04650.

[103]  Vladas Pipiras,et al.  Domain and range symmetries of operator fractional Brownian fields , 2016, 1609.01007.

[104]  Nelly Pustelnik,et al.  Non-Linear Wavelet Regression and Branch & Bound Optimization for the Full Identification of Bivariate Operator Fractional Brownian Motion , 2016, IEEE Transactions on Signal Processing.

[105]  Kensuke Fukuda,et al.  Scaling in Internet Traffic: A 14 Year and 3 Day Longitudinal Study, With Multiscale Analyses and Random Projections , 2017, IEEE/ACM Transactions on Networking.

[106]  G. Didier,et al.  Multivariate Hadamard self-similarity: testing fractal connectivity , 2017, 1701.04366.

[107]  Patrice Abry,et al.  Wavelet eigenvalue regression for n-variate operator fractional Brownian motion , 2017, J. Multivar. Anal..

[108]  Kung-Sik Chan,et al.  Inference of Bivariate Long-memory Aggregate Time Series , 2018 .