Electrorheological Valves for Flexible Fluidic Actuators

Abstract This article proposes multilayer valves based on electrorheological fluids (ERFs) for controlling flexible fluidic actuators with a simplified circuit. ERFs are used both as actuation fluid and as control medium: The pressure drop in the miniature fast-response electrorheological (ER) valves is caused by the viscosity change in ERFs, and it is obtained directly by an electrical signal. We tested the ER valves with several flow channel dimensions in different conditions of flow and pressure, some of them reaching pressures up to 1 MPa with no leakages. We successfully integrated eight ER valves (four inlet and four discharge valves) in a flexible fluidic system made of four fluidic chambers to perform motions in 3D environments.

[1]  Kazuhiro Yoshida,et al.  A flexible electro-rheological microvalve (FERV) based on SU-8 cantilever structures and its application to microactuators , 2009 .

[2]  Dominiek Reynaerts,et al.  Design of miniature parallel manipulators for integration in a self-propelling endoscope , 2000 .

[3]  S. Schneider,et al.  Characterization of Step Response Time and Bandwidth of Electrorheological Fluids , 2011 .

[4]  Luis Sentis,et al.  Characterization and Testing of an Electrorheological Fluid Valve for Control of ERF Actuators , 2015 .

[5]  H. Tanaka,et al.  Applying a flexible microactuator to robotic mechanisms , 1992, IEEE Control Systems.

[6]  Robert J. Wood,et al.  Mechanically programmable bend radius for fiber-reinforced soft actuators , 2013, 2013 16th International Conference on Advanced Robotics (ICAR).

[7]  Alain Delchambre,et al.  Towards flexible medical instruments: Review of flexible fluidic actuators , 2009 .

[8]  Hyoung Jin Choi,et al.  Electrorheological fluids: smart soft matter and characteristics , 2012 .

[9]  Koichi Suzumori,et al.  A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[10]  D. Brooks,et al.  Applicability of Simplified Expressions for Design with Electro-Rheological Fluids , 1993 .

[11]  CianchettiMatteo,et al.  Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach , 2014 .

[12]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[13]  A. J. Simmonds,et al.  Electro-rheological valves in a hydraulic circuit , 1991 .

[14]  G. Böhme,et al.  Measuring the response time and static rheological properties of electrorheological fluids with regard to the design of valves and their controllers , 2009 .

[15]  C. D. Onal,et al.  A modular approach to soft robots , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[16]  Yoel Shapiro,et al.  Bi-bellows: Pneumatic bending actuator , 2011 .

[17]  A Ruzzu,et al.  Positioning system for catheter tips based on an active microvalve system , 1998 .

[18]  G. Whitesides,et al.  Soft Machines That are Resistant to Puncture and That Self Seal , 2013, Advanced materials.

[19]  Stefan Schulz,et al.  Compliant Robotics and Automation with Flexible Fluidic Actuators and Inflatable Structures , 2012 .

[20]  Martin Gurka,et al.  New electrorheological fluids — characteristics and implementation in industrial and mobile applications , 2009 .

[21]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[22]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[23]  P. Sheng,et al.  Electrorheological Fluids: Mechanisms, Dynamics, and Microfluidics Applications , 2012 .

[24]  Tian Hao,et al.  Electrorheological Fluids: The Non-Aqueous Suspensions , 2006 .

[25]  Cagdas D. Onal,et al.  Soft robot actuators using energy-efficient valves controlled by electropermanent magnets , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Markus Reischl,et al.  A hydraulically driven multifunctional prosthetic hand , 2005, Robotica.

[27]  Kazuhiro Yoshida,et al.  An intelligent microactuator robust against disturbance using electro-rheological fluid , 2012 .

[28]  L. C. Davis Time-dependent and nonlinear effects in electrorheological fluids , 1997 .

[29]  S. Yokota,et al.  Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments , 2002 .

[30]  Seung-Bok Choi,et al.  Position control of a parallel link manipulator using electro-rheological valve actuators , 2001 .

[31]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[32]  Nicholas C. Rosenfeld,et al.  Volume-constrained optimization of magnetorheological and electrorheological valves and dampers , 2004 .

[33]  Hyoung-Jong So,et al.  Development of the pneumatic valve with bimorph type PZT actuator , 2006 .

[34]  Dielectric Analysis of Response Time in Electrorheological Fluids Developed for Medical Devices , 2011 .

[35]  Eckhard Wendt,et al.  A New Type of Hydraulic Actuator Using Electrorheological Fluids , 1999 .

[36]  Daniel J. Klingenberg,et al.  Electrorheology : mechanisms and models , 1996 .

[37]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[38]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[39]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[40]  Ali Sadeghi,et al.  Innovative soft robots based on electro-rheological fluids , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Arianna Menciassi,et al.  A SMA-actuated miniature pressure regulator for a miniature robot for colonoscopy , 2003 .