Characterizing the local oscillatory content of spontaneous cortical activity during mental imagery.

We report on the determination of detailed spectra for simultaneously active sources of spontaneous neuronal activity in humans directly from data recorded with a whole-scalp 122-channel magnetometer array. Subjects rested with eyes open and performed two contrasting mental imagery tasks: the imagination of the self-performance of a motor activity and the silent generation of a chain of words. A novel analysis technique, frequency-domain signal-space projection (FDSSP) was utilized to determine the temporal and spectral characteristics of spontaneous brain activity at specific cortical sites. Although intersubject differences were significant, spectra for individual subjects contained task-dependent features which were reproducible over successive 20-s epochs. This result supports the concept of multiple sources of spontaneous cortical activity and suggests that detailed spectra of localized oscillatory activity obtained non-invasively with magnetoencephalographic arrays may provide a useful characterization of cortical involvement in mental imagery.

[1]  C D Tesche,et al.  Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. , 1995, Electroencephalography and clinical neurophysiology.

[2]  C Braun,et al.  Neurophysiological differences between perception and imagery. , 1994, Brain research. Cognitive brain research.

[3]  E. Niedertneyer Quantitative and topological EEG and MEG analysis , 1996 .

[4]  S. Kosslyn,et al.  Visual Mental Imagery Activates Topographically Organized Visual Cortex: PET Investigations , 1993, Journal of Cognitive Neuroscience.

[5]  F. D. da Silva,et al.  Organization of thalamic and cortical alpha rhythms: spectra and coherences. , 1973, Electroencephalography and clinical neurophysiology.

[6]  M. Farah Is visual imagery really visual? Overlooked evidence from neuropsychology. , 1988, Psychological review.

[7]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  L. Kaufman,et al.  Modulation of Spontaneous Brain Activity during Mental Imagery , 1990, Journal of Cognitive Neuroscience.

[9]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[10]  J. Mazziotta,et al.  Mapping motor representations with positron emission tomography , 1994, Nature.

[11]  B. Lütkenhöner Frequency-domain localization of intracerebral dipolar sources. , 1992, Electroencephalography and clinical neurophysiology.

[12]  M. Sterman,et al.  Biofeedback Training of the Sensorimotor Electroencephalogram Rhythm in Man: Effects on Epilepsy , 1974, Epilepsia.

[13]  S. Kosslyn Aspects of a cognitive neuroscience of mental imagery. , 1988, Science.

[14]  R. Ilmoniemi,et al.  Synthetic magnetometer channels for standard representation of data , 1992 .

[15]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[16]  G. Chatrian,et al.  The blocking of the rolandic wicket rhythm and some central changes related to movement. , 1959, Electroencephalography and clinical neurophysiology.

[17]  R. Freeman,et al.  Oscillatory discharge in the visual system: does it have a functional role? , 1992, Journal of neurophysiology.

[18]  Manfried Hoke,et al.  Biomagnetism: Clinical Aspects , 1992 .

[19]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[20]  Samuel J. Williamson,et al.  Advances in Biomagnetism , 1990, Springer US.

[21]  L. Kaufman,et al.  Somatically Evoked Magnetic Fields of the Human Brain , 1978, Science.

[22]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[23]  H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche , 1853 .

[24]  R. Hari,et al.  Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement , 1994, Neuroscience.

[25]  L. Parkkonen,et al.  122-channel squid instrument for investigating the magnetic signals from the human brain , 1993 .

[26]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Finke,et al.  Principles of mental imagery , 1989 .

[29]  M Kajola,et al.  A comparison of the localization of spontaneous neuromagnetic activity in the frequency and time domains. , 1993, Electroencephalography and clinical neurophysiology.

[30]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[31]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[32]  K Shinosaki,et al.  Moving potential field of frontal midline theta activity during a mental task. , 1994, Brain research. Cognitive brain research.

[33]  Klaus Willmes,et al.  Regional cerebral blood flow patterns in visual imagery , 1989, Neuropsychologia.

[34]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[35]  Stephen E. Robinson Environmental Noise Cancellation for Biomagnetic Measurements , 1989 .

[36]  M. Scherg Fundamentals if dipole source potential analysis , 1990 .

[37]  E. Niedermeyer,et al.  Enhancement of Rolandic mu-rhythm by pattern vision. , 1975, Electroencephalography and clinical neurophysiology.

[38]  A. Georgopoulos,et al.  Cognitive neurophysiology of the motor cortex. , 1993, Science.