Spatiotemporal reasoning about epidemiological data

OBJECTIVE In this article, we propose new methods to visualize and reason about spatiotemporal epidemiological data. BACKGROUND Efficient computerized reasoning about epidemics is important to public health and national security, but it is a difficult task because epidemiological data are usually spatiotemporal, recursive, and fast changing hence hard to handle in traditional relational databases and geographic information systems. METHODOLOGY We describe the general methods of how to (1) store epidemiological data in constraint databases, (2) handle recursive epidemiological definitions, and (3) efficiently reason about epidemiological data based on recursive and non-recursive Structured Query Language (SQL) queries. RESULTS We implement a particular epidemiological system called West Nile Virus Information System (WeNiVIS) that enables the visual tracking of and reasoning about the spread of the West Nile Virus (WNV) epidemic in Pennsylvania. In the system, users can do many interesting reasonings based on the spatiotemporal dataset and the recursively defined risk evaluation function through the SQL query interfaces. CONCLUSIONS In this article, the WeNiVIS system is used to visualize and reason about the spread of West Nile Virus in Pennsylvania as a sample application. Beside this particular case, the general methodology used in the implementation of the system is also appropriate for many other applications. Our general solution for reasoning about epidemics and related spatiotemporal phenomena enables one to solve many problems similar to WNV without much modification.

[1]  Youming Li,et al.  A New Shape Function Based Spatiotemporal Interpolation Method , 2004, CDB.

[2]  S. Sudarshan,et al.  Database System Concepts, 4th Edition , 2001 .

[3]  Raghu Ramakrishnan,et al.  Database Management Systems , 1976 .

[4]  Lixin Li,et al.  Interpolation methods for spatio-temporal geographic data , 2004, Comput. Environ. Urban Syst..

[5]  Constandinos N. Theophilides,et al.  Identifying West Nile virus risk areas: the Dynamic Continuous-Area Space-Time system. , 2003, American journal of epidemiology.

[6]  Jan Chomicki,et al.  Constraint-Based Interoperability of Spatiotemporal Databases , 1997, SSD.

[7]  Jia Chen,et al.  The CCUBE Constraint Object-Oriented Database System , 1999, SIGMOD '99.

[8]  Franco Turini,et al.  Enhancing GISs for spatio-temporal reasoning , 2002, GIS '02.

[9]  Peter Z. Revesz,et al.  Visualization of recursively defined concepts , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..

[10]  Floris Geerts,et al.  Constraint Query Languages , 2008, Encyclopedia of GIS.

[11]  Lynette Hirschman,et al.  MiTAP for Biosecurity: A Case Study , 2002, AI Mag..

[12]  Daniel R. O’Leary,et al.  The outbreak of West Nile virus infection in the New York City area in 1999. , 2001, The New England journal of medicine.

[13]  Dina Q. Goldin,et al.  The constraint database framework: lessons learned from CQA/CDB , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[14]  Abraham Silberschatz,et al.  Database System Concepts , 1980 .

[15]  Ramez Elmasri,et al.  Fundamentals of Database Systems , 1989 .

[16]  Florence Reeder,et al.  MiTAP for Bio-Security: A Case Study , 2002 .

[17]  Stéphane Grumbach,et al.  Constraint Databases , 1999, JFPLC.

[18]  Stéphane Grumbach,et al.  The DEDALE system for complex spatial queries , 1998, SIGMOD '98.

[19]  Jan Chomicki,et al.  Classes of Spatio-Temporal Objects and their Closure Properties , 2004, Annals of Mathematics and Artificial Intelligence.

[20]  Yonghui Wang,et al.  The MLPQ/GIS constraint database system , 2000, SIGMOD '00.

[21]  Peter Z. Revesz,et al.  Information visualization methods for gis, constraint and spatiotemporal databases , 2005 .

[22]  Michael F. Worboys,et al.  GIS : a computing perspective , 2004 .

[23]  Lixin Li,et al.  A Comparison of Spatio-temporal Interpolation Methods , 2002, GIScience.

[24]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[25]  Abraham Silberschatz,et al.  Database Systems Concepts , 1997 .

[26]  David J. Maguire,et al.  Geographical Information Systems , 1993 .

[27]  Bart Kuijpers,et al.  Introduction to constraint databases , 2002, SGMD.

[28]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[29]  E. F. Codd,et al.  A relational model of data for large shared data banks , 1970, CACM.

[30]  E. F. Codd,et al.  A Relational Model for Large Shared Data Banks , 1970 .

[31]  Ramez Elmasri,et al.  Fundamentals of Database Systems, 5th Edition , 2006 .