High-power high-speed photodetectors-design, analysis, and experimental demonstration

A novel velocity-matched distributed photodetector (VMDP) is proposed to simultaneously achieve high saturation photocurrent and broad bandwidth. Theoretical analysis on the tradeoff between saturation power and bandwidth shows that the VMDP offers fundamental advantages over conventional photodetectors. A comprehensive theoretical model has been developed for the design and simulation of the VMDP. Experimentally, the VMDP with very high saturation (56-mA) photocurrent and instrument-limited 3-dB bandwidth (49 GHz) has been demonstrated. The theoretical analysis and experimental results show that the VMDP is very attractive for high-performance microwave photonic links and high-power optical microwave applications.

[1]  T. Itoh,et al.  Velocity-matched distributed photodetectors with high-saturation power and large bandwidth , 1996, IEEE Photonics Technology Letters.

[2]  Vincent M. Hietala,et al.  Traveling-wave photodetectors for high-power, large-bandwidth applications , 1995 .

[3]  M. Wu,et al.  Ultrafast High Power Photodetectors , 1995, IEEE/LEOS 1995 Digest of the LEOS Summer Topical Meetings. Flat Panel Display Technology.

[4]  G. Y. Robinson,et al.  110-GHz GaInAs/InP double heterostructure p-i-n photodetectors , 1995 .

[5]  J.E. Bowers,et al.  Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product , 1995, IEEE Photonics Technology Letters.

[6]  Paul K. L. Yu,et al.  Dynamic range performance of a high speed, high saturation InGaAs/InP pin waveguide photodetector , 1995 .

[7]  R. Kalman,et al.  Dynamic range of coherent analog fiber-optic links , 1994 .

[8]  T. Nagatsuma,et al.  110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-/spl mu/m wavelength , 1994, IEEE Photonics Technology Letters.

[9]  Ming C. Wu,et al.  Ultrafast Photonic-to-microwave Transformer (PMT) , 1993, LEOS 1993 Summer Topical Meeting Digest on Optical Microwave Interactions/Visible Semiconductor Lasers/Impact of Fiber Nonlinearities on Lightwave Systems/Hybrid Optoelectronic Integration and Packagi.

[10]  A. S. Hou,et al.  2‐picosecond, GaAs photodiode optoelectronic circuit for optical correlation applications , 1992 .

[11]  J. Bowers,et al.  Traveling-wave photodetectors , 1992, IEEE Photonics Technology Letters.

[12]  C. H. Cox,et al.  Gain and noise figure in analogue fibre-optic links , 1992 .

[13]  G. Mourou,et al.  Terahertz attenuation and dispersion characteristics of coplanar transmission lines , 1991 .

[14]  E. Kapon,et al.  Low-loss III-V semiconductor optical waveguides , 1991 .

[15]  B. Hillerich Shape analysis and coupling loss of microlenses on single-mode fiber tips. , 1988, Applied optics.

[16]  J. Bowers,et al.  Ultrawide-band long-wavelength p-i-n photodetectors , 1987 .

[17]  J. Whinnery,et al.  Dispersion of Picosecond Pulses in Coplanar Transmission Lines , 1986 .

[18]  L. B. Felsen,et al.  Theory of optical waveguides , 1979 .

[19]  K. Gupta,et al.  Microstrip Lines and Slotlines , 1979 .

[20]  T. Kitazawa,et al.  A Coplanar Waveguide with Thick Metal-Coating (Short Papers) , 1976 .

[21]  C. Wen Coplanar Waveguide, a Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications , 1969 .

[22]  G. Lucovsky,et al.  Transit-time considerations in p-i-n diodes. , 1964 .

[23]  K. Williams,et al.  Nonlinearities in p-i-n microwave photodetectors , 1996 .

[24]  Stephen Y. Chou,et al.  Nanoscale tera-hertz metal-semiconductor-metal photodetectors , 1992 .

[25]  H. Kogelnik Theory of Optical Waveguides , 1988 .

[26]  K. Button,et al.  Infrared and Millimeter Waves , 1983 .