Pro-ML IDeAS: A Probabilistic Framework for Explicit Inverse Design using Invertible Neural Network

[1]  M Zangeneh,et al.  On the role of three-dimensional inverse design methods in turbomachinery shape optimization , 1999 .

[2]  Liping Wang,et al.  A Strategy for Adaptive Sampling of Multi-fidelity Gaussian Process to Reduce Predictive Uncertainty , 2019, Volume 2B: 45th Design Automation Conference.

[3]  M. Giles,et al.  Two-Dimensional Transonic Aerodynamic Design Method , 1987 .

[4]  Liping Wang,et al.  Variance Based Global Sensitivity Analysis for Uncorrelated and Correlated Inputs With Gaussian Processes , 2015 .

[5]  Liping Yu,et al.  Theoretical prediction and experimental realization of new stable inorganic materials using the inverse design approach. , 2013, Journal of the American Chemical Society.

[6]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[7]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[8]  Lakshmi N. Sankar,et al.  Inverse aerodynamic design method for aircraft components , 1987 .

[9]  George S. Dulikravich,et al.  Shape inverse design and optimization for three-dimensional aerodynamics , 1995 .

[10]  Kevin Ryan,et al.  An intelligent sampling framework for multi-objective optimization in high dimensional design space , 2018 .

[11]  Yiming Zhang,et al.  Advances in Bayesian Probabilistic Modeling for Industrial Applications , 2020, ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg.

[12]  Eric Laloy,et al.  Training‐Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network , 2017, ArXiv.

[13]  George S. Dulikravich,et al.  Aerodynamic shape inverse design using a Fourier series method , 1999 .

[14]  Ilias Bilionis,et al.  Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification , 2013, J. Comput. Phys..

[15]  Nicholas Zabaras,et al.  Structured Bayesian Gaussian process latent variable model: applications to data-driven dimensionality reduction and high-dimensional inversion , 2019, J. Comput. Phys..

[16]  Liping Wang,et al.  Remarks for Scaling Up a General Gaussian Process to Model Large Dataset with Sub-models , 2020 .

[17]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[18]  Y. Hwang,et al.  Applying neural networks to the solution of forward and inverse heat conduction problems , 2006 .

[19]  Liping Wang,et al.  Challenges in Uncertainty, Calibration, Validation and Predictability of Engineering Analysis Models , 2011 .

[20]  Martin J. Blunt,et al.  Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior , 2019, Mathematical Geosciences.

[21]  Jonas Adler,et al.  Solving ill-posed inverse problems using iterative deep neural networks , 2017, ArXiv.

[22]  Alexander Y. Piggott,et al.  Fabrication-constrained nanophotonic inverse design , 2016, Scientific Reports.

[23]  Paris Perdikaris,et al.  Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data , 2019, J. Comput. Phys..

[24]  Qi-Jun Zhang,et al.  Neural Network Inverse Modeling and Applications to Microwave Filter Design , 2008, IEEE Transactions on Microwave Theory and Techniques.

[25]  Liping Wang,et al.  Calibrating Transient Models With Multiple Responses Using Bayesian Inverse Techniques , 2013 .

[26]  Brian Williams,et al.  A Bayesian calibration approach to the thermal problem , 2008 .

[27]  Michael Unser,et al.  Deep Convolutional Neural Network for Inverse Problems in Imaging , 2016, IEEE Transactions on Image Processing.

[28]  Liping Wang,et al.  Expected-Improvement-Based Methods for Adaptive Sampling in Multi-Objective Optimization Problems , 2016, DAC 2016.

[29]  Kevin Ryan,et al.  Bayesian Multi-Source Modeling with Legacy Data , 2018 .

[30]  Liping Wang,et al.  Improving High-Dimensional Physics Models Through Bayesian Calibration With Uncertain Data , 2012 .

[31]  S. Obayashi,et al.  Genetic optimization of target pressure distributions for inverse design methods , 1996 .

[32]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[33]  J. Howell,et al.  Comparison of Methods for Inverse Design of Radiant Enclosures , 2005 .

[34]  Jichun Wu,et al.  Deep Autoregressive Neural Networks for High‐Dimensional Inverse Problems in Groundwater Contaminant Source Identification , 2018, Water Resources Research.

[35]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).