A Monte Carlo simulation of primary and secondary electron trajectories in a specimen

A new Monte Carlo calculation model is presented to simulate not only the primary electron behavior but also the secondary electron cascade in a specimen bombarded with an electron beam. Electrons having energy greater than 0.1 keV are treated as ‘‘fast electrons’’ and the previous single scattering Monte Carlo model is adopted. Electrons having energy smaller than 0.1 keV are treated as ‘‘slow electrons’’ and the electron cascade Monte Carlo model is used. The calculated results for the energy distribution of secondary electrons, and primary electron energy dependence of the total secondary yield and the backscattering yield are in good agreement with experimental results.

[1]  R. Lye,et al.  Theory of Secondary Emission , 1957 .

[2]  E. A. Flinn,et al.  An experimental assessment of proposed universal yield curves for secondary electron emission , 1980 .

[3]  L. M. Roth,et al.  EFFECT OF PRIMARY-ELECTRON DIFFUSION ON SECONDARY-ELECTRON EMISSION. , 1972 .

[4]  S. Bloom,et al.  Secondary‐electron‐escape probabilities , 1978 .

[5]  K. Murata,et al.  Monte Carlo simulation of 1--10-keV electron scattering in an aluminum target , 1981 .

[6]  M. Cailler,et al.  Traitement unifié de l'émission électronique secondaire du cuivre par une méthode de Monte Carlo , 1973 .

[7]  R. Bonham,et al.  Analytical Expressions for Potentials of Neutral Thomas—Fermi—Dirac Atoms and for the Corresponding Atomic Scattering Factors for X Rays and Electrons , 1963 .

[8]  David B. Wittry,et al.  X-ray continuum from thick elemental targets for 10-50-keV electrons , 1974 .

[9]  P. Wolff THEORY OF SECONDARY ELECTRON CASCADE IN METALS , 1954 .

[10]  Gerald F. Dionne,et al.  Effects of secondary electron scattering on secondary emission yield curves , 1973 .

[11]  H. Lantéri,et al.  Theoretical efficiency of back-scattered electrons in secondary electron emission from aluminium , 1980 .

[12]  G. F. Amelio,et al.  Theory for the Energy Distribution of Secondary Electrons , 1970 .

[13]  K. Kanaya,et al.  Secondary electron emission due to primary and backscattered electrons , 1972 .

[14]  J. Schou,et al.  Transport theory for kinetic emission of secondary electrons from solids , 1980 .

[15]  R. Shimizu,et al.  Secondary electron and backscattering measurements for polycrystalline copper with a spherical retarding-field analyser , 1973 .

[16]  W. J. Byatt ANALYTICAL REPRESENTATION OF HARTREE POTENTIALS AND ELECTRON SCATTERING , 1956 .

[17]  H. Lantéri,et al.  Application of the Boltzmann equation to secondary electron emission from copper and gold , 1980 .

[18]  K. Murata,et al.  Monte Carlo Calculations of the Electron‐Sample Interactions in the Scanning Electron Microscope , 1971 .

[19]  H. Seiler Einige aktuelle Probleme der Sekundarelektron-emission , 1967 .

[20]  T. Everhart,et al.  Simple calculation of energy distribution of low‐energy secondary electrons emitted from metals under electron bombardment , 1974 .

[21]  H. Streitwolf Zur Theorie der Sekundrelektronenemission von Metallen Der Anregungsproze , 1959 .

[22]  R. Bonham,et al.  Analytical Expressions for the Hartree—Fock Potential of Neutral Atoms and for the Corresponding Scattering Factors for X Rays and Electrons , 1964 .

[23]  R. Shimizu,et al.  A Monte Carlo calculation of low-energy secondary electron emission from metals , 1974 .

[24]  Ryuichi Shimizu,et al.  Secondary electron yield with primary electron beam of kilo‐electron‐volts , 1974 .

[25]  J. Ganachaud,et al.  A Monte-Carlo calculation of the secondary electron emission of normal metals: I. The model , 1979 .

[26]  J. Schonfelder,et al.  POLARIZATION BY MERCURY OF 100- TO 2000-ev ELECTRONS , 1965 .

[27]  K. Kanaya,et al.  The energy dependence of secondary emission based on the range-energy retardation power formula , 1979 .