Progressive aqueous alteration of CM carbonaceous chondrites

Abstract CM chondrites are aqueously altered rocks that contain ∼9 wt% H 2 O + (i.e., indigenous water) bound in phyllosilicates; also present are clumps of serpentine-tochilinite intergrowths (previously called “poorly characterized phases” or PCP), pentlandite and Ni-bearing pyrrhotite. We studied 11 CM chondrites that span the known range from least altered to most altered. We used various petrologic properties (many previously identified) that provide information regarding the degree of aqueous alteration. There are no known unaltered or slightly altered CM chondrites (e.g., rocks containing numerous chondrules with primary igneous glass). Some CM properties result from processes associated with early and intermediate stages of the alteration sequence (i.e., hydration of matrix, alteration of chondrule glass, and production of large PCP clumps). Other petrologic properties reflect processes active throughout the alteration sequence; these include oxidation of metallic Fe–Ni, alteration of chondrule phenocrysts, changes in PCP composition (reflecting an increase in the phyllosilicate/sulfide ratio), and changes in carbonate mineralogy (reflecting the development of dolomite and complex carbonates at the expense of Ca carbonate). On the basis of these parameters, we propose a numerical alteration sequence for CM chondrites. Because there are no known CM samples that display only incipient alteration, the least altered sample was arbitrarily assigned to subtype 2.6. The most altered CM chondrites, currently classified CM1, are assigned to subtype 2.0. These highly altered rocks have essentially no mafic silicates; they contain chondrule pseudomorphs composed mainly of phyllosilicate. However, their bulk compositions are CM-like, and they are closer in texture to other C2 chondrites than to CI1 chondrites (which lack chondrule pseudomorphs). Using several diagnostic criteria, we assigned petrologic subtypes (±0.1) to every CM chondrite in our study: QUE 97990, CM2.6; Murchison, CM2.5; Kivesvaara, CM2.5; Murray, CM2.4/2.5; Y 791198, CM2.4; QUE 99355, CM2.3; Nogoya, CM2.2; Cold Bokkeveld, CM2.2; QUE 93005, CM2.1; LAP 02277, CM2.0; MET 01070, CM2.0. The proposed CM numerical alteration sequence improves upon the existing scheme of Browning et al. (1996) in that it does not require a complicated algorithm applied to electron-microprobe data to determine the average matrix phyllosilicate composition. The new sequence is more comprehensive and employs petrologic subtypes that are easier to use and remember than mineralogic alteration index values. New neutron-activation analyses of QUE 97990, QUE 93005, MET 01070, Murchison and Crescent, together with literature data, confirm the compositional uniformity of the CM group; different degrees of alteration among CM chondrites do not lead to resolvable bulk compositional differences. This suggests that the textural differences among individual CM chondrites reflect progressive alteration of similar hypothetical CM3.0 starting materials in different regions of the same parent body, with minimal aqueous transport of materials over appreciable (e.g., meters) distances.

[1]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[2]  M. Zolensky,et al.  The Meteoritical Bulletin, No. 89, 2005 September , 2005 .

[3]  A. Kearsley,et al.  Volatile fractionation in the early solar system and chondrule/matrix complementarity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  K. Metzler Formation of accretionary dust mantles in the solar nebula: Evidence from preirradiated olivines in CM chondrites , 2004 .

[5]  D. J. Barber Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites , 1981 .

[6]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[7]  S. Richardson,et al.  Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites , 1978 .

[8]  T. Mccoy,et al.  The Meteoritical Bulletin, No. 87, 2003 July , 2003 .

[9]  A. Brearley,et al.  The onset of metamorphism in ordinary and carbonaceous chondrites , 2005 .

[10]  H. McSween,et al.  Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids , 1994 .

[11]  D. Mittlefehldt Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite Bells, and comparison with CI and CM chondrites , 2002 .

[12]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[13]  P. Buseck,et al.  Fine‐grained rims in the Allan Hills 81002 and Lewis Cliff 90500 CM2 meteorites: Their origin and modification , 2002 .

[14]  R. Clayton,et al.  Origin of dark clasts in the Acfer 059/El Djouf 001 CR2 chondrite , 1994 .

[15]  I. Ohnishi,et al.  Hydrothermal alteration experiments of enstatite: Implications for aqueous alteration of carbonaceous chondrites , 2007 .

[16]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[17]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[18]  A. Bischoff,et al.  Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.

[19]  A. Greshake The primitive matrix components of the unique carbonaceous chondrite Acfer 094: a TEM study. , 1997, Geochimica et cosmochimica acta.

[20]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[21]  R. Wogelius,et al.  Olivine dissolution kinetics at near-surface conditions , 1992 .

[22]  R. Clayton,et al.  Chemical, isotopic and mineralogical evidence for the origin of matrix in ordinary chondrites , 1989 .

[23]  U. Krähenbühl,et al.  Halogen contamination in Antarctic H5 and H6 chondrites and relation to sites of recovery , 1993 .

[24]  L. Schultz,et al.  Light noble gases in stony meteorites—a compilation , 1978 .

[25]  T. E. Bunch,et al.  Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .

[26]  A. Rubin Mineralogy of meteorite groups , 1997 .

[27]  M. Zolensky Hydrothermal alteration of CM carbonaceous chondrites; implications of the identification of tochilinite as one type of meteoritic PCP , 1984 .

[28]  M. Zolensky,et al.  Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .

[29]  Gerhard Kminek,et al.  Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites , 2004, Origins of life and evolution of the biosphere.

[30]  Z. Sharp A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides , 1990 .

[31]  M. Zolensky,et al.  Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .

[32]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[33]  John T. Wasson,et al.  Meteorites: Classification and Properties , 1974 .

[34]  A. Rubin,et al.  A weathering index for CK and R chondrites , 2005 .

[35]  S. Brantley,et al.  Dissolution of forsteritic olivine at 65°C and 2 , 2000 .

[36]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[37]  M. Zolensky,et al.  Petrographic, Chemical and Spectroscopic Data on Thermally Metamorphosed Carbonaceous Chondrites , 2002 .

[38]  J. Kerridge,et al.  Carbonates and sulfates in CI chondrites: formation by aqueous activity on the parent body. , 1988, Meteoritics.

[39]  A. Brearley,et al.  Zoned chondrules in Semarkona: Evidence for high‐ and low‐temperature processing , 2002 .

[40]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[41]  R. Hutchison Meteorites: A Petrologic, Chemical and Isotopic Synthesis , 1981 .

[42]  John A. Wood,et al.  A chemical-petrologic classification for the chondritic meteorites. , 1967 .

[43]  A. Rubin Relationships Among Intrinsic Properties of Ordinary Chondrites: Oxidation State, Bulk Chemistry, Oxygen-isotopic Composition, Petrologic Type, and Chondrule Size , 2005 .

[44]  P. Buseck,et al.  Mineralogy of fine-grained rims in the alh 81002 cm chondrite , 2000 .

[45]  D. J. Barber,et al.  Yamato-82042: an unusual carbonaceous chondrite with CM affinities , 1987 .

[46]  D. J. Barber,et al.  Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites , 1989 .

[47]  D. J. Barber Phyllosilicates and other layer-structured materials in stony meteorites , 1985, Clay Minerals.

[48]  L. Keller A transmission electron microscope study of iron‐nickel carbides in the matrix of the Semarkona unequilibrated ordinary chondrite , 1998 .

[49]  A. Rubin,et al.  The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites , 1991 .

[50]  R. Clayton,et al.  Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara , 1993 .

[51]  B. Mysen,et al.  Non-Rayleigh oxygen isotope fractionation by mineral evaporation: theory and experiments in the system SiO2 , 1998 .

[52]  R. Clayton,et al.  The CR chondrite clan , 1995 .

[53]  L. Leshin,et al.  Planetesimal sulfate and aqueous alteration in CM and CI carbonaceous chondrites , 2005 .

[54]  T. Bunch,et al.  Aqueous activity on asteroids - Evidence from carbonaceous meteorites , 1979 .

[55]  A. Brearley,et al.  Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .

[56]  C. Johnson,et al.  Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration , 1993 .

[57]  A. Rubin,et al.  Oxygen-isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM , 2005 .

[58]  L. Grossman,et al.  Early chemical history of the solar system , 1974 .

[59]  J. Eiler,et al.  Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites 1 1 Associate , 2004 .

[60]  A. Brearley,et al.  Aqueous Alteration of Carbonaceous Chondrites: New Insights from Comparative Studies of Two Unbrecciated CM2 Chondrites, Y 791198 and ALH 81002 , 2004 .

[61]  D. Lauretta,et al.  Radial migration and dehydration of phyllosilicates in the solar nebula , 2005 .

[62]  J. Wood Metamorphism in chondrites , 1962 .

[63]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[64]  A. Brearley,et al.  Localized Chemical Redistribution During Aqueous Alteration in CR2 Carbonaceous Chondrites EET 87770 and EET 92105 , 2005 .

[65]  V. Formisano,et al.  The Renazzo meteorite , 1993 .

[66]  D. Lauretta,et al.  A Nebular Origin for Chondritic Fine-Grained Phyllosilicates , 2003, Science.

[67]  A. Rubin,et al.  Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules , 1986 .

[68]  Tomoki Nakamura Post-hydration thermal metamorphism of carbonaceous chondrites , 2005 .

[69]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[70]  P. Bland,et al.  Modal mineralogy of carbonaceous chondrites by X‐ray diffraction and Mössbauer spectroscopy , 2004 .

[71]  L. Schultz,et al.  Helium, neon, and argon in meteorites: A data collection , 1989 .

[72]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[73]  M. Zolensky,et al.  A terrestrial origin for sulfate veins in CI1 chondrites , 2001 .

[74]  J. Wasson Evaporation of nebular fines during chondrule formation , 2008 .

[75]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[76]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[77]  A. Brearley The Role of Microchemical Environments in the Alteration of CM Carbonaceous Chondrites , 2006 .

[78]  M. Zolensky,et al.  On the origin of rim textures surrounding anhydrous silicate grains in CM carbonaceous chondrites , 2000 .

[79]  D. J. Barber,et al.  The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications , 1987 .

[80]  M. Weisberg,et al.  The GRO 95577 CR1 chondrite and hydration of the CR parent body , 2007 .

[81]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[82]  A. Rubin Correlated petrologic and geochemical characteristics of CO3 chondrites , 1998 .

[83]  Pascale Ehrenfreund,et al.  Indigenous amino acids in primitive CR meteorites , 2007 .

[84]  G. Consolmagno,et al.  An impact origin for the foliation of chondrites , 2005 .

[85]  A. Brearley,et al.  Aqueous alteration of chondrules in the CM carbonaceous chondrite, Allan Hills 81002: implications for parent body alteration , 2001 .

[86]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[87]  H. Horowitz,et al.  A New Analysis of Thermogravimetric Traces. , 1963 .

[88]  H. B. Wiik,et al.  The chemical composition of some stony meteorites , 1956 .

[89]  J. Wood,et al.  The condensation with partial isolation (CWPI) model of condensation in the solar nebula , 1998 .

[90]  J. Trigo‐Rodríguez,et al.  Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites , 2006 .

[91]  F. Wlotzka A Weathering Scale for the Ordinary Chondrites , 1993 .

[92]  T. Noguchi Petrology and mineralogy of the PCA 91082 chondrite and its comparison with the Yamato-793495(CR) chondrite , 1995 .

[93]  A. Rubin,et al.  Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .

[94]  P. Buseck,et al.  Fine-grained Rim Mineralogy of the Cold Bokkeveld CM Chondrite by Transmission Electron Microscopy , 2001 .

[95]  J. Trigo‐Rodríguez,et al.  EVAPORATION DURING CHONDRULE FORMATION, RECONDENSATION AS FINE PARTICLES, AND THE CONDENSATION OF S AND OTHER VOLATILE ELEMENTS , 2004 .

[96]  M. Zolensky,et al.  Aqueous Alteration Mineralogy in CM Carbonaceous Chondrites , 2004 .

[97]  Ikeda,et al.  Petrology of the Yamato-8449 CR chondrite , 1995 .

[98]  L. Leshin,et al.  The oxygen isotopic composition of olivine and pyroxene from CI chondrites , 1997 .

[99]  Alan E. Rubin,et al.  Chemical, Mineralogical and Isotopic Properties of Chondrules: Clues to Their Origin , 2004 .

[100]  H. McSween Aqueous alteration in carbonaceous chondrites - Mass balance constraints on matrix mineralogy , 1987 .

[101]  A. Brearley,et al.  Iron‐rich aureoles in the CM carbonaceous chondrites Murray, Murchison, and Allan Hills 81002: Evidence for in situ aqueous alteration , 2000 .

[102]  L. Leshin,et al.  Carbonates in CM2 chondrites: constraints on alteration conditions from oxygen isotopic compositions and petrographic observations , 2003 .

[103]  H. McSween,et al.  Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .