Progressive aqueous alteration of CM carbonaceous chondrites
暂无分享,去创建一个
Alan E. Rubin | John T. Wasson | Josep M. Trigo-Rodríguez | J. Trigo‐Rodríguez | A. Rubin | J. Wasson | Heinz Huber | H. Huber
[1] E. Jarosewich,et al. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .
[2] M. Zolensky,et al. The Meteoritical Bulletin, No. 89, 2005 September , 2005 .
[3] A. Kearsley,et al. Volatile fractionation in the early solar system and chondrule/matrix complementarity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[4] K. Metzler. Formation of accretionary dust mantles in the solar nebula: Evidence from preirradiated olivines in CM chondrites , 2004 .
[5] D. J. Barber. Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites , 1981 .
[6] M. Zolensky,et al. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .
[7] S. Richardson,et al. Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites , 1978 .
[8] T. Mccoy,et al. The Meteoritical Bulletin, No. 87, 2003 July , 2003 .
[9] A. Brearley,et al. The onset of metamorphism in ordinary and carbonaceous chondrites , 2005 .
[10] H. McSween,et al. Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids , 1994 .
[11] D. Mittlefehldt. Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite Bells, and comparison with CI and CM chondrites , 2002 .
[12] A. Rubin,et al. THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .
[13] P. Buseck,et al. Fine‐grained rims in the Allan Hills 81002 and Lewis Cliff 90500 CM2 meteorites: Their origin and modification , 2002 .
[14] R. Clayton,et al. Origin of dark clasts in the Acfer 059/El Djouf 001 CR2 chondrite , 1994 .
[15] I. Ohnishi,et al. Hydrothermal alteration experiments of enstatite: Implications for aqueous alteration of carbonaceous chondrites , 2007 .
[16] D. Stöffler,et al. Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .
[17] R. Clayton,et al. The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .
[18] A. Bischoff,et al. Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.
[19] A. Greshake. The primitive matrix components of the unique carbonaceous chondrite Acfer 094: a TEM study. , 1997, Geochimica et cosmochimica acta.
[20] M. Zolensky,et al. CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .
[21] R. Wogelius,et al. Olivine dissolution kinetics at near-surface conditions , 1992 .
[22] R. Clayton,et al. Chemical, isotopic and mineralogical evidence for the origin of matrix in ordinary chondrites , 1989 .
[23] U. Krähenbühl,et al. Halogen contamination in Antarctic H5 and H6 chondrites and relation to sites of recovery , 1993 .
[24] L. Schultz,et al. Light noble gases in stony meteorites—a compilation , 1978 .
[25] T. E. Bunch,et al. Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .
[26] A. Rubin. Mineralogy of meteorite groups , 1997 .
[27] M. Zolensky. Hydrothermal alteration of CM carbonaceous chondrites; implications of the identification of tochilinite as one type of meteoritic PCP , 1984 .
[28] M. Zolensky,et al. Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .
[29] Gerhard Kminek,et al. Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites , 2004, Origins of life and evolution of the biosphere.
[30] Z. Sharp. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides , 1990 .
[31] M. Zolensky,et al. Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .
[32] Harry Y. McSween,et al. Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .
[33] John T. Wasson,et al. Meteorites: Classification and Properties , 1974 .
[34] A. Rubin,et al. A weathering index for CK and R chondrites , 2005 .
[35] S. Brantley,et al. Dissolution of forsteritic olivine at 65°C and 2 , 2000 .
[36] P. Buseck,et al. Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .
[37] M. Zolensky,et al. Petrographic, Chemical and Spectroscopic Data on Thermally Metamorphosed Carbonaceous Chondrites , 2002 .
[38] J. Kerridge,et al. Carbonates and sulfates in CI chondrites: formation by aqueous activity on the parent body. , 1988, Meteoritics.
[39] A. Brearley,et al. Zoned chondrules in Semarkona: Evidence for high‐ and low‐temperature processing , 2002 .
[40] Adrian J. Brearley,et al. The Action of Water , 2006 .
[41] R. Hutchison. Meteorites: A Petrologic, Chemical and Isotopic Synthesis , 1981 .
[42] John A. Wood,et al. A chemical-petrologic classification for the chondritic meteorites. , 1967 .
[43] A. Rubin. Relationships Among Intrinsic Properties of Ordinary Chondrites: Oxidation State, Bulk Chemistry, Oxygen-isotopic Composition, Petrologic Type, and Chondrule Size , 2005 .
[44] P. Buseck,et al. Mineralogy of fine-grained rims in the alh 81002 cm chondrite , 2000 .
[45] D. J. Barber,et al. Yamato-82042: an unusual carbonaceous chondrite with CM affinities , 1987 .
[46] D. J. Barber,et al. Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites , 1989 .
[47] D. J. Barber. Phyllosilicates and other layer-structured materials in stony meteorites , 1985, Clay Minerals.
[48] L. Keller. A transmission electron microscope study of iron‐nickel carbides in the matrix of the Semarkona unequilibrated ordinary chondrite , 1998 .
[49] A. Rubin,et al. The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites , 1991 .
[50] R. Clayton,et al. Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara , 1993 .
[51] B. Mysen,et al. Non-Rayleigh oxygen isotope fractionation by mineral evaporation: theory and experiments in the system SiO2 , 1998 .
[52] R. Clayton,et al. The CR chondrite clan , 1995 .
[53] L. Leshin,et al. Planetesimal sulfate and aqueous alteration in CM and CI carbonaceous chondrites , 2005 .
[54] T. Bunch,et al. Aqueous activity on asteroids - Evidence from carbonaceous meteorites , 1979 .
[55] A. Brearley,et al. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .
[56] C. Johnson,et al. Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration , 1993 .
[57] A. Rubin,et al. Oxygen-isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM , 2005 .
[58] L. Grossman,et al. Early chemical history of the solar system , 1974 .
[59] J. Eiler,et al. Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites 1 1 Associate , 2004 .
[60] A. Brearley,et al. Aqueous Alteration of Carbonaceous Chondrites: New Insights from Comparative Studies of Two Unbrecciated CM2 Chondrites, Y 791198 and ALH 81002 , 2004 .
[61] D. Lauretta,et al. Radial migration and dehydration of phyllosilicates in the solar nebula , 2005 .
[62] J. Wood. Metamorphism in chondrites , 1962 .
[63] R. Clayton,et al. The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .
[64] A. Brearley,et al. Localized Chemical Redistribution During Aqueous Alteration in CR2 Carbonaceous Chondrites EET 87770 and EET 92105 , 2005 .
[65] V. Formisano,et al. The Renazzo meteorite , 1993 .
[66] D. Lauretta,et al. A Nebular Origin for Chondritic Fine-Grained Phyllosilicates , 2003, Science.
[67] A. Rubin,et al. Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules , 1986 .
[68] Tomoki Nakamura. Post-hydration thermal metamorphism of carbonaceous chondrites , 2005 .
[69] L. Fuchs,et al. Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .
[70] P. Bland,et al. Modal mineralogy of carbonaceous chondrites by X‐ray diffraction and Mössbauer spectroscopy , 2004 .
[71] L. Schultz,et al. Helium, neon, and argon in meteorites: A data collection , 1989 .
[72] R. Clayton,et al. Oxygen isotope studies of carbonaceous chondrites , 1999 .
[73] M. Zolensky,et al. A terrestrial origin for sulfate veins in CI1 chondrites , 2001 .
[74] J. Wasson. Evaporation of nebular fines during chondrule formation , 2008 .
[75] H. McSween. Are carbonaceous chondrites primitive or processed? A review , 1979 .
[76] E. Scott,et al. Shock metamorphism of carbonaceous chondrites , 1991 .
[77] A. Brearley. The Role of Microchemical Environments in the Alteration of CM Carbonaceous Chondrites , 2006 .
[78] M. Zolensky,et al. On the origin of rim textures surrounding anhydrous silicate grains in CM carbonaceous chondrites , 2000 .
[79] D. J. Barber,et al. The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications , 1987 .
[80] M. Weisberg,et al. The GRO 95577 CR1 chondrite and hydration of the CR parent body , 2007 .
[81] Michael E. Zolensky,et al. Correlated alteration effects in CM carbonaceous chondrites , 1996 .
[82] A. Rubin. Correlated petrologic and geochemical characteristics of CO3 chondrites , 1998 .
[83] Pascale Ehrenfreund,et al. Indigenous amino acids in primitive CR meteorites , 2007 .
[84] G. Consolmagno,et al. An impact origin for the foliation of chondrites , 2005 .
[85] A. Brearley,et al. Aqueous alteration of chondrules in the CM carbonaceous chondrite, Allan Hills 81002: implications for parent body alteration , 2001 .
[86] E. Anders,et al. Meteorites and the Early Solar System , 1971 .
[87] H. Horowitz,et al. A New Analysis of Thermogravimetric Traces. , 1963 .
[88] H. B. Wiik,et al. The chemical composition of some stony meteorites , 1956 .
[89] J. Wood,et al. The condensation with partial isolation (CWPI) model of condensation in the solar nebula , 1998 .
[90] J. Trigo‐Rodríguez,et al. Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites , 2006 .
[91] F. Wlotzka. A Weathering Scale for the Ordinary Chondrites , 1993 .
[92] T. Noguchi. Petrology and mineralogy of the PCA 91082 chondrite and its comparison with the Yamato-793495(CR) chondrite , 1995 .
[93] A. Rubin,et al. Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .
[94] P. Buseck,et al. Fine-grained Rim Mineralogy of the Cold Bokkeveld CM Chondrite by Transmission Electron Microscopy , 2001 .
[95] J. Trigo‐Rodríguez,et al. EVAPORATION DURING CHONDRULE FORMATION, RECONDENSATION AS FINE PARTICLES, AND THE CONDENSATION OF S AND OTHER VOLATILE ELEMENTS , 2004 .
[96] M. Zolensky,et al. Aqueous Alteration Mineralogy in CM Carbonaceous Chondrites , 2004 .
[97] Ikeda,et al. Petrology of the Yamato-8449 CR chondrite , 1995 .
[98] L. Leshin,et al. The oxygen isotopic composition of olivine and pyroxene from CI chondrites , 1997 .
[99] Alan E. Rubin,et al. Chemical, Mineralogical and Isotopic Properties of Chondrules: Clues to Their Origin , 2004 .
[100] H. McSween. Aqueous alteration in carbonaceous chondrites - Mass balance constraints on matrix mineralogy , 1987 .
[101] A. Brearley,et al. Iron‐rich aureoles in the CM carbonaceous chondrites Murray, Murchison, and Allan Hills 81002: Evidence for in situ aqueous alteration , 2000 .
[102] L. Leshin,et al. Carbonates in CM2 chondrites: constraints on alteration conditions from oxygen isotopic compositions and petrographic observations , 2003 .
[103] H. McSween,et al. Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .