Rac1 regulates the release of Weibel-Palade Bodies in human aortic endothelial cells.
暂无分享,去创建一个
BACKGROUND
The release of Weibel-Palade Bodies (WPB) is a form of endothelial cell activation. But the signal transduction pathway leading to WPB release is not yet defined. We hypothesized that small G-protein rac1 and reactive oxygen species (ROS) mediate the ligand induced release of Weibel-Palade Bodies.
METHODS
We tested this hypothesis by using wild-type and mutant adenoviral rac1 expression vectors, and by manipulating the production and destruction of superoxide and hydrogen peroxide in human aortic endothelial cells (HAEC).
RESULTS
Thrombin (1.0 Unit, 30 min) induced the increase of WPB release by 3.7-fold in HAEC, and that H2O2 (0.1 mmol/L, 30 min) induced by 4.5-fold. These results correlated with thrombin-stimulated activation of rac-GTP binding activity by 3.5-fold, and increase of ROS production by 3.4-fold. The dominant negative adenoviral rac-N17 gene transfer dramatically inhibited the release of WPB by 64.2% (control) and 77.3% (thrombin-stimulation), and decreased ROS production by 65.5% (control) and 83.6% (thrombin-stimulation) compared with non-infected cells, respectively. Anti-oxidants, catalase and N-acetyl-cysteine significantly decreased the release of WPB by 34% and 79% in control cells, and further decreased by 63.6% and 46.7% in rac-N17 transferred cells compared with non-infected cells. We also confirmed that rac1 was located upstream of ROS in the WPB release pathway.
CONCLUSIONS
Small G-protein rac1 medicates ligand-induced release of Weibel-Palade Bodies in human aortic endothelial cells, and the signal pathway of WPB release is a rac1-dependent ROS regulating mechanism.