Fuzzy classification by fuzzy labeled neural gas

We extend the neural gas for supervised fuzzy classification. In this way we are able to learn crisp as well as fuzzy clustering, given labeled data. Based on the neural gas cost function, we propose three different ways to incorporate the additional class information into the learning algorithm. We demonstrate the effect on the location of the prototypes and the classification accuracy. Further, we show that relevance learning can be easily included.

[1]  T. Kohonen,et al.  Bibliography of Self-Organizing Map SOM) Papers: 1998-2001 Addendum , 2003 .

[2]  Cor J. Veenman,et al.  The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[4]  Thomas Villmann,et al.  Mathematical Aspects of Neural Networks , 2003, ESANN.

[5]  J. Cuthbert,et al.  Wilson's disease. Update of a systemic disorder with protean manifestations. , 1998, Gastroenterology clinics of North America.

[6]  Diane W. Cox,et al.  3 Wilson disease , 1998 .

[7]  T. Villmann,et al.  Elektrophysiologisches Schädigungsprofil von Patienten mit einem Morbus Wilson , 2003, Der Nervenarzt.

[8]  T. Heskes Energy functions for self-organizing maps , 1999 .

[9]  Thomas Villmann,et al.  On the Generalization Ability of GRLVQ Networks , 2005, Neural Processing Letters.

[10]  Atsushi Sato,et al.  Generalized Learning Vector Quantization , 1995, NIPS.

[11]  Samuel Kaski,et al.  Bankruptcy analysis with self-organizing maps in learning metrics , 2001, IEEE Trans. Neural Networks.

[12]  T. Saito,et al.  Presenting symptoms and natural history of Wilson disease , 1987, European Journal of Pediatrics.

[13]  J Lössner,et al.  [Wilson's disease in East Germany: in retrospect and perspectives -- an evaluation]. , 1990, Psychiatrie, Neurologie, und medizinische Psychologie.

[14]  Thomas Villmann,et al.  Generalized relevance learning vector quantization , 2002, Neural Networks.

[15]  Samuel Kaski,et al.  Clustering Based on Conditional Distributions in an Auxiliary Space , 2002, Neural Computation.

[16]  Paul Scheunders,et al.  Wavelet-FILVQ classifier for speech analysis , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[17]  Deniz Erdogmus,et al.  Vector quantization using information theoretic concepts , 2005, Natural Computing.

[18]  Thomas Martinetz,et al.  'Neural-gas' network for vector quantization and its application to time-series prediction , 1993, IEEE Trans. Neural Networks.

[19]  Erkki Oja,et al.  Kohonen Maps , 1999, Encyclopedia of Machine Learning.

[20]  Deniz Erdoğmuş,et al.  Vector-quantization by density matching in the minimum Kullback-Leibler divergence sense , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[21]  T. Villmann,et al.  Klassifikation des Morbus Wilson auf der Basis neurophysiologischer Parameter , 2005, Der Nervenarzt.

[22]  Thomas Villmann,et al.  Theory and applications of neural maps , 2004, ESANN.

[23]  Thomas Villmann,et al.  Supervised Neural Gas with General Similarity Measure , 2005, Neural Processing Letters.

[24]  Thomas Villmann,et al.  Magnification Control in Self-Organizing Maps and Neural Gas , 2006, Neural Computation.