On first-order-logic databases

The use of first-order logic as database logic is shown to be powerful enough for formalizing and implementing not only relational but also hierarchical and network-type databases. It enables one to treat all the types of databases in a uniform manner. This paper focuses on the database language for heterogeneous databases. The language is shown to be general enough to specify constraints for a particular type of database, so that a specification of database type can be “translated” to the specification given in the database language, creating a “logical environment” for different views that can be defined by users. Owing to the fact that any database schema is seen as a first-order theory expressed by a finite set of sentences, the problems concerned with completeness and compactness of the database logic discussed by Jacobs ("On Database Logic,” J. ACM 29,2 (Apr. 1982), 310-332) are avoided.

[1]  Alonzo Church,et al.  Introduction to Mathematical Logic. Part I , 1944 .

[2]  A. Mostowski Review: B. A. Trahtenbrot, Impossibility of an Algorithm for the Decision Problem in Finite Classes , 1950, Journal of Symbolic Logic.

[3]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[4]  E. F. CODD,et al.  A relational model of data for large shared data banks , 1970, CACM.

[5]  Robert A. Di Paola The Solvability of the Decision Problem for Classes of Proper Formulas and Related Results , 1973, JACM.

[6]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[7]  Jay F. Nunamaker,et al.  FORTRAN IMPLEMENTATION OF THE CODASYL DATA BASE TASK GROUP REPORT. , 1974 .

[8]  Laurian M. Chirica,et al.  The entity-relationship model: toward a unified view of data , 1975, SIGF.

[9]  Peter P. Chen The entity-relationship model: toward a unified view of data , 1975, VLDB '75.

[10]  Jean-Marc Cadiou,et al.  On Semantic Issues in the Relational Model of Data , 1976, MFCS.

[11]  Jack Minker An Experimental Relational Data Base System Based on Logic , 1977, Logic and Data Bases.

[12]  Rudolf Munz The WELL system: a multi-user database system based on binary relationships and graph-pattern-matching , 1978, Inf. Syst..

[13]  Jean-Marie Nicolas First order logic formalization for functional, multivalued and mutual dependencies , 1978, SIGMOD '78.

[14]  Catriel Beeri,et al.  A Sophisticate's Introduction to Database Normalization Theory , 1978, VLDB.

[15]  Peter Buneman,et al.  FQL: a functional query language , 1979, SIGMOD '79.

[16]  Marco A. Casanova,et al.  The logic of a relational data manipulation language , 1979, POPL '79.

[17]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[18]  David W. Shipman The functional data model and the data language DAPLEX , 1979, SIGMOD '79.

[19]  David W. Shipman,et al.  The functional data model and the data languages DAPLEX , 1981, TODS.

[20]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[21]  Raymond Reiter,et al.  Towards a Logical Reconstruction of Relational Database Theory , 1982, On Conceptual Modelling.

[22]  Barry E. Jacobs,et al.  On Database Logic , 1982, JACM.

[23]  Y. Edmund Lien,et al.  On the Equivalence of Database Models , 1982, JACM.

[24]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[25]  Jack Minker ON DEDUCTIVE RELATIONAL DATABASES * † , 1983 .

[26]  Jack Minker,et al.  Logic and Databases: A Deductive Approach , 1984, CSUR.

[27]  Richard Hull,et al.  The format model: a theory of database organization , 1982, JACM.

[28]  Serge Abiteboul,et al.  Non first normal form relations to represent hierarchically organized data , 1984, PODS.

[29]  Janusz R. Getta,et al.  HOLMES: a deduction augmented database management system , 1984, Inf. Syst..

[30]  Janusz R. Getta,et al.  UNIBASE - An Integrated Access to Databases , 1984, VLDB.

[31]  Gabriel M. Kuper,et al.  On the expressive power of the logical data model: prelimiary report , 1985, SIGMOD '85.

[32]  Z. INFORMATION SYSTEMS THEORETICAL FOUNDATIONS , 2022 .