Some U(n1 + n2) ⊃U(n1) ⊗U(n2) isoscalar factors
暂无分享,去创建一个
[1] P. Isacker,et al. Symmetries and deformations in the spherical shell model , 2016, 1601.02837.
[2] V. Kota,et al. Random Matrix Theory for Transition Strength Densities in Finite Quantum Systems: Results from Embedded Unitary Ensembles , 2015, 1504.00759.
[3] S. Alǐsauskas. Comment on ‘‘The matrix representation of U4 in the U2×U2 basis and isoscalar factors for Up+q⊇Up×Uq’’ [F. Pan, J. Math. Phys. 31, 1333 (1990)] , 1992 .
[4] Chen. Generalized quantization formalism. , 1991, Physical review. C, Nuclear physics.
[5] G. Long,et al. Coefficients of fractional parentage for a double-l boson system , 1990 .
[6] F. Pan. The matrix representation of U4 in the U2×U2 basis and some isoscalar factors for Up+q ⊇Up×Uq , 1990 .
[7] D. Rowe,et al. New perspective on the U(n) Wigner-Racah calculus. I. Vector coherent state theory and construction of Gel'fand bases , 1987 .
[8] Jin-quan Chen,et al. Coefficients of fractional parentage for U(m + p/n + q) ⊃ U(m/n) × U(p/q) and U(m/n) ⊃ U(m) × U(n) , 1984 .
[9] B. G. Wybourne,et al. Classical Groups for Physicists , 1974 .
[10] J. Vergados. SU(3) ⊃ R(3) Wigner coefficients in the 2s-1d shell , 1968 .
[11] P. Kramer. Recoupling coefficients of the symmetric group for shell and cluster model configurations , 1968 .
[12] K. Hecht. Five-dimensional quasi-spin the n , T dependence of shell-model matrix elements in the seniority scheme , 1967 .
[13] K. Hecht. SU3 recoupling and fractional parentage in the 2s-1d shell , 1965 .