Splenic marginal zone lymphoma: comprehensive analysis of gene expression and miRNA profiling

[1]  Ahmet Dogan,et al.  An Integrated Genomic and Expression Analysis of 7q Deletion in Splenic Marginal Zone Lymphoma , 2012, PloS one.

[2]  K. Elenitoba-Johnson,et al.  Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma , 2012, The Journal of experimental medicine.

[3]  S. Pileri,et al.  The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development , 2012, The Journal of experimental medicine.

[4]  M Paulli,et al.  Dysregulation of global microRNA expression in splenic marginal zone lymphoma and influence of chronic hepatitis C virus infection , 2012, Leukemia.

[5]  M. Piris,et al.  Nodal marginal zone lymphoma: gene expression and miRNA profiling identify diagnostic markers and potential therapeutic targets. , 2012, Blood.

[6]  G. Salles,et al.  MicroRNA expression profile in splenic marginal zone lymphoma , 2012, British journal of haematology.

[7]  D. Amin,et al.  CD200 Expression in B-Cell Chronic Lymphoproliferative Disorders , 2012, Journal of Investigative Medicine.

[8]  Francesco Bertoni,et al.  Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. , 2011, Blood.

[9]  Dereje D. Jima,et al.  Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. , 2010, Blood.

[10]  A. Salar,et al.  Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. , 2010, Blood.

[11]  Johan Hansson,et al.  MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. , 2010, The Journal of investigative dermatology.

[12]  R. Greil,et al.  microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. , 2010, Blood.

[13]  J. Cigudosa,et al.  Mantle cell lymphoma: transcriptional regulation by microRNAs , 2010, Leukemia.

[14]  Y. Bae,et al.  New Cdc2 Tyr 4 phosphorylation by dsRNA‐activated protein kinase triggers Cdc2 polyubiquitination and G2 arrest under genotoxic stresses , 2010, EMBO reports.

[15]  In Gyu Kim,et al.  TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21(WAF1/Cip1) and PTEN/AKT pathway. , 2010, Biochemical and biophysical research communications.

[16]  F. Speleman,et al.  Comparison of miRNA profiles of microdissected Hodgkin/Reed‐Sternberg cells and Hodgkin cell lines versus CD77+ B‐cells reveals a distinct subset of differentially expressed miRNAs , 2009, British journal of haematology.

[17]  Yu-Jin Jung,et al.  RhoB induces apoptosis via direct interaction with TNFAIP1 in HeLa cells , 2009, International journal of cancer.

[18]  B. Kroesen,et al.  miRNA profiling of B-cell subsets: specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes , 2009, Laboratory Investigation.

[19]  K. Basso,et al.  Identification of the human mature B cell miRNome. , 2009, Immunity.

[20]  Kaleb M. Pauley,et al.  MicroRNA in autoimmunity and autoimmune diseases. , 2009, Journal of autoimmunity.

[21]  J. Weill,et al.  Human marginal zone B cells. , 2009, Annual review of immunology.

[22]  M. Ferracin,et al.  MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. , 2009, Free radical biology & medicine.

[23]  E. Kimby,et al.  Functional signatures identified in B-cell non-Hodgkin lymphoma profiles , 2009, Leukemia & lymphoma.

[24]  M. Ziepert,et al.  MicroRNA signatures characterize diffuse large B‐cell lymphomas and follicular lymphomas , 2008, British journal of haematology.

[25]  A. Harris,et al.  Detection of elevated levels of tumour‐associated microRNAs in serum of patients with diffuse large B‐cell lymphoma , 2008, British journal of haematology.

[26]  E. Campo,et al.  New chromosomal alterations in a series of 23 splenic marginal zone lymphoma patients revealed by Spectral Karyotyping (SKY). , 2008, Leukemia research.

[27]  K. Hinchliffe,et al.  Regulation of extranuclear PtdIns5P production by phosphatidylinositol phosphate 4‐kinase 2α , 2008, FEBS letters.

[28]  C. Borrebaeck,et al.  Functionally associated targets in mantle cell lymphoma as defined by DNA microarrays and RNA interference. , 2008, Blood.

[29]  N. Shinton WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues , 2007 .

[30]  M. Mateo,et al.  MicroRNA losses in the frequently deleted region of 7q in SMZL , 2007, Leukemia.

[31]  Todd R. Golub,et al.  MicroRNA Expression Signatures Accurately Discriminate Acute Lymphoblastic Leukemia from Acute Myeloid Leukemia. , 2007 .

[32]  Gordon K. Smyth,et al.  A comparison of background correction methods for two-colour microarrays , 2007, Bioinform..

[33]  Y. Pekarsky,et al.  The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. , 2007, Best practice & research. Clinical haematology.

[34]  M. Piris,et al.  Molecular heterogeneity in chronic lymphocytic leukemia is dependent on BCR signaling: clinical correlation , 2007, Leukemia.

[35]  Chris Sander,et al.  Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. , 2007, Blood.

[36]  N. Rajewsky,et al.  Regulation of the Germinal Center Response by MicroRNA-155 , 2007, Science.

[37]  B. Coiffier,et al.  Management of marginal zone lymphomas , 2006, Current treatment options in oncology.

[38]  H. Tagawa,et al.  A microRNA cluster as a target of genomic amplification in malignant lymphoma , 2005, Leukemia.

[39]  E. Campo,et al.  Splenic marginal zone lymphoma: proposal of new diagnostic and prognostic markers identified after tissue and cDNA microarray analysis. , 2005, Blood.

[40]  J. Delabie,et al.  Constitutive expression of the AP-1 transcription factors c-jun, junD, junB, and c-fos and the marginal zone B-cell transcription factor Notch2 in splenic marginal zone lymphoma. , 2004, The Journal of molecular diagnostics : JMD.

[41]  L. Staudt,et al.  Distinct gene expression profiles in different B-cell compartments in human peripheral lymphoid organs , 2004, BMC Immunology.

[42]  E. Campo,et al.  Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. , 2002, Blood.

[43]  Harris,et al.  The World Health Organization classification of neoplastic diseases of the haematopoietic and lymphoid tissues: report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997 , 2000, Histopathology.

[44]  G Flandrin,et al.  The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. , 1999, Annals of oncology : official journal of the European Society for Medical Oncology.

[45]  M. Piris,et al.  7q31-32 allelic loss is a frequent finding in splenic marginal zone lymphoma. , 1999, The American journal of pathology.

[46]  J. Paton,et al.  BMC Biotechnology BioMed Central Research article , 2008 .