Subcarrier Intensity Modulated Optical Wireless Communications Using Noncoherent and Differentially Coherent Modulations

Error rate performance is analyzed for subcarrier noncoherent and differentially coherent modulated optical wireless communication systems over atmospheric turbulence channels. Both Gamma-Gamma and negative exponential channels are considered. Using a moment generating function approach, we obtain a unified bit-error rate expression for a family of noncoherent and differentially coherent modulations. We also analyze the symbol-error rate performance of subcarrier M-ary differential phase-shift keying and M -ary noncoherent frequency-shift keying modulated systems using the same frequency domain approach. Our asymptotic analysis reveals relative error rate performance of M -ary differential phase-shift keying and M-ary noncoherent frequency-shift keying in different channel conditions.

[1]  Masao Nakagawa,et al.  Atmospheric optical communication system using subcarrier PSK modulation , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[2]  Xuan Tang,et al.  Coherent optical binary polarisation shift keying heterodyne system in the free-space optical turbulence channel , 2011 .

[3]  E. Leitgeb,et al.  BER performance of DPSK subcarrier modulated free space optics in fully developed speckle , 2008, 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing.

[4]  Julian Cheng,et al.  Optical Communication Using Subcarrier Intensity Modulation in Strong Atmospheric Turbulence , 2012, Journal of Lightwave Technology.

[5]  Zabih Ghassemlooy,et al.  BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence , 2009, Journal of Lightwave Technology.

[6]  Xuan Tang,et al.  Coherent Heterodyne Multilevel Polarization Shift Keying With Spatial Diversity in a Free-Space Optical Turbulence Channel , 2012, Journal of Lightwave Technology.

[7]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[8]  Julian Cheng,et al.  Subcarrier intensity modulated wireless optical communications with rectangular QAM , 2012, IEEE/OSA Journal of Optical Communications and Networking.

[9]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[10]  Md. Zoheb Hassan,et al.  Subcarrier dqpsk modulated optical wireless communications in atmospheric turbulence , 2012 .

[11]  Govind P. Agrawal,et al.  Fiber-optic communication system , 2002 .

[12]  Joseph M. Kahn,et al.  Free-space optical communication through atmospheric turbulence channels , 2002, IEEE Trans. Commun..

[13]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[14]  Mohamed-Slim Alouini,et al.  A unified approach to the probability of error for noncoherent and differentially coherent modulations over generalized fading channels , 1998, IEEE Trans. Commun..

[15]  Jonathan F. Holzman,et al.  Performance analysis of coherent wireless optical communications with atmospheric turbulence. , 2012, Optics express.

[16]  Julian Cheng,et al.  Error Rate of Subcarrier Intensity Modulations for Wireless Optical Communications , 2012, IEEE Communications Letters.

[17]  Ning Wang,et al.  Moment-based estimation for the shape parameters of the Gamma-Gamma atmospheric turbulence model. , 2010, Optics express.

[18]  Zabih Ghassemlooy,et al.  Optical Wireless Communications: System and Channel Modelling with MATLAB® , 2012 .

[19]  Robert F. Pawula Generic error probabilities , 1999, IEEE Trans. Commun..

[20]  Julian Cheng,et al.  Error Rate Analysis of M-ary Coherent Free-Space Optical Communication Systems with K-Distributed Turbulence , 2011, IEEE Transactions on Communications.

[21]  L. Andrews,et al.  Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media , 2001 .