Fair morse functions for extracting the topological structure of a surface mesh

Morse theory reveals the topological structure of a shape based on the critical points of a real function over the shape. A poor choice of this real function can lead to a complex configuration of an unnecessarily high number of critical points. This paper solves a relaxed form of Laplace's equation to find a "fair" Morse function with a user-controlled number and configuration of critical points. When the number is minimal, the resulting Morse complex cuts the shape into a disk. Specifying additional critical points at surface features yields a base domain that better represents the geometry and shares the same topology as the original mesh, and can also cluster a mesh into approximately developable patches. We make Morse theory on meshes more robust with teflon saddles and flat edge collapses, and devise a new "intermediate value propagation" multigrid solver for finding fair Morse functions that runs in provably linear time.

[1]  T. Banchoff Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .

[2]  R. Lee,et al.  Two-Dimensional Critical Point Configuration Graphs , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[4]  David G. Kirkpatrick,et al.  A Linear Algorithm for Determining the Separation of Convex Polyhedra , 1985, J. Algorithms.

[5]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[6]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[7]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1995, Discret. Comput. Geom..

[8]  Konstantin Mischaikow,et al.  Conley index theory , 1995 .

[9]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[10]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[11]  Herbert Edelsbrunner,et al.  Auditory Morse Analysis of Triangulated Manifolds , 1997, VisMath.

[12]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[13]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[14]  Chandrajit L. Bajaj,et al.  Topology preserving data simplification with error bounds , 1998, Comput. Graph..

[15]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[16]  Valerio Pascucci,et al.  Visualization of scalar topology for structural enhancement , 1998 .

[17]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[18]  David P. Dobkin,et al.  Multiresolution mesh morphing , 1999, SIGGRAPH.

[19]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[20]  Elena L. Kartasheva The algorithm for automatic cutting of three-dimensional polyhedrons of h-genus , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[21]  E. Sturler,et al.  Surface Parameterization for Meshing by Triangulation Flattenin , 2000 .

[22]  Dan Piponi,et al.  Seamless texture mapping of subdivision surfaces by model pelting and texture blending , 2000, SIGGRAPH.

[23]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[24]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[25]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[26]  Anath Fischer,et al.  Topology recognition of 3D closed freeform objects based on topological graphs , 2001, SMA '01.

[27]  Alla Sheffer,et al.  Smoothing an overlay grid to minimize linear distortion in texture mapping , 2002, TOGS.

[28]  Ross T. Whitaker,et al.  Geometric surface smoothing via anisotropic diffusion of normals , 2002, IEEE Visualization, 2002. VIS 2002..

[29]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[30]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[31]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[32]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[33]  John C. Hart,et al.  Seamster: inconspicuous low-distortion texture seam layout , 2002, IEEE Visualization, 2002. VIS 2002..

[34]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[35]  Bruno Lévy,et al.  Hierarchical least squares conformal map , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[36]  B. Hamann,et al.  A multi-resolution data structure for two-dimensional Morse-Smale functions , 2003, IEEE Visualization, 2003. VIS 2003..

[37]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[38]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[39]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[40]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[41]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[42]  Gert Vegter,et al.  Computational Topology , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[43]  John C. Hart,et al.  Guaranteeing the topology of an implicit surface polygonization for interactive modeling , 1997, SIGGRAPH Courses.

[44]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[45]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[46]  John C. Hart,et al.  Using the CW-complex to represent the topological structure of implicit surfaces and solids , 2005, SIGGRAPH Courses.

[47]  P. Schröder,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.