Novel Relationships Among Ten Fish Model Species Revealed Based on a Phylogenomic Analysis Using ESTs

The power of comparative phylogenomic analyses also depends on the amount of data that are included in such studies. We used expressed sequence tags (ESTs) from fish model species as a proof of principle approach in order to test the reliability of using ESTs for phylogenetic inference. As expected, the robustness increases with the amount of sequences. Although some progress has been made in the elucidation of the phylogeny of teleosts, relationships among the main lineages of the derived fish (Euteleostei) remain poorly defined and are still debated. We performed a phylogenomic analysis of a set of 42 of orthologous genes from 10 available fish model systems from seven different orders (Salmoniformes, Siluriformes, Cypriniformes, Tetraodontiformes, Cyprinodontiformes, Beloniformes, and Perciformes) of euteleostean fish to estimate divergence times and evolutionary relationships among those lineages. All 10 fish species serve as models for developmental, aquaculture, genomic, and comparative genetic studies. The phylogenetic signal and the strength of the contribution of each of the 42 orthologous genes were estimated with randomly chosen data subsets. Our study revealed a molecular phylogeny of higher-level relationships of derived teleosts, which indicates that the use of multiple genes produces robust phylogenies, a finding that is expected to apply to other phylogenetic issues among distantly related taxa. Our phylogenomic analyses confirm that the euteleostean superorders Ostariophysi and Acanthopterygii are monophyletic and the Protacanthopterygii and Ostariophysi are sister clades. In addition, and contrary to the traditional phylogenetic hypothesis, our analyses determine that killifish (Cyprinodontiformes), medaka (Beloniformes), and cichlids (Perciformes) appear to be more closely related to each other than either of them is to pufferfish (Tetraodontiformes). All 10 lineages split before or during the fragmentation of the supercontinent Pangea in the Jurassic.

[1]  D. Rosen,et al.  Origin of the Weberian apparatus and the relationships of the ostariophysan and gonorynchiform fishes. American Museum novitates ; no. 2428 , 1970 .

[2]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[3]  Sudhir Kumar,et al.  Taxon sampling, bioinformatics, and phylogenomics. , 2003, Systematic biology.

[4]  B. Venkatesh,et al.  The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. , 2005, Gene.

[5]  D. Hillis,et al.  Taxonomic sampling, phylogenetic accuracy, and investigator bias. , 1998, Systematic biology.

[6]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[7]  A. Meyer,et al.  Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish , 2004, Journal of Molecular Evolution.

[8]  B. Larget,et al.  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .

[9]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[10]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[11]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[12]  Alfried P Vogler,et al.  Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). , 2006, Molecular biology and evolution.

[13]  M. P. Cummings,et al.  Sampling properties of DNA sequence data in phylogenetic analysis. , 1995, Molecular biology and evolution.

[14]  G. D. Johnson,et al.  Chapter 12 – Relationships of Lower Euteleostean Fishes , 1996 .

[15]  Hans A Hofmann,et al.  Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray , 2004, BMC Genomics.

[16]  A. Chicaro,et al.  Animal Evolution and the Molecular Signature of Radiations Compressed in Time , 2005 .

[17]  Y. Kohara,et al.  Extensive analysis of ORF sequences from two different cichlid species in Lake Victoria provides molecular evidence for a recent radiation event of the Victoria species flock: identity of EST sequences between Haplochromis chilotes and Haplochromis sp. "Redtailsheller". , 2004, Gene.

[18]  Sudhindra R Gadagkar,et al.  Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. , 2005, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[19]  Derrick J. Zwickl,et al.  Is sparse taxon sampling a problem for phylogenetic inference? , 2003, Systematic biology.

[20]  M. Nishida,et al.  Mitochondrial Molecular Clocks and the Origin of Euteleostean Biodiversity: Familial Radiation of Perciforms May Have Predated the Cretaceous/Tertiary Boundary , 2000 .

[21]  David M. Johnson,et al.  Percomorph phylogeny: a survey of acanthomorphs and a new proposal , 1993 .

[22]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[23]  D. Rosen,et al.  The structure and relationships of the paracanthopterygian fishes. Bulletin of the AMNH ; v. 141, article 3 , 1970 .

[24]  Sudhir Kumar,et al.  Efficiency of the Neighbor-Joining Method in Reconstructing Deep and Shallow Evolutionary Relationships in Large Phylogenies , 2000, Journal of Molecular Evolution.

[25]  H. Shaffer,et al.  Assessing Concordance of Fossil Calibration Points in Molecular Clock Studies: An Example Using Turtles , 2004, The American Naturalist.

[26]  D. Rosen Phylogeny and zoogeography of salmoniform fishes and relationships of Lepidogalaxias salamandroides. Bulletin of the AMNH ; v. 153, article 2 , 1974 .

[27]  Eric Vigoda,et al.  Phylogenetic MCMC Algorithms Are Misleading on Mixtures of Trees , 2005, Science.

[28]  Dirk Steinke,et al.  EverEST ? A phylogenomic EST database approach , 2004 .

[29]  Stanley H. Weitzman,et al.  Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the AMNH ; v. 131, article 4 , 1967 .

[30]  James A. Lake,et al.  Phylogenetic analysis and comparative genomics , 1998 .

[31]  S. Fink Chapter 11 – Interrelationships of Ostariophysan Fishes (Teleostei) , 1996 .

[32]  M. Allard,et al.  Sources of incongruence among mammalian mitochondrial sequences: COII, COIII, and ND6 genes are main contributors. , 2001, Molecular phylogenetics and evolution.

[33]  M. Miya,et al.  Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. , 2000, Molecular phylogenetics and evolution.

[34]  A. Meyer,et al.  Genome duplication, a trait shared by 22000 species of ray-finned fish. , 2003, Genome research.

[35]  M. Simmons,et al.  Efficiently resolving the basal clades of a phylogenetic tree using Bayesian and parsimony approaches: a case study using mitogenomic data from 100 higher teleost fishes. , 2004, Molecular phylogenetics and evolution.

[36]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[37]  Sudhir Kumar,et al.  Incomplete taxon sampling is not a problem for phylogenetic inference , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Klein,et al.  Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes. , 2003, Molecular biology and evolution.

[39]  Carol A. Stepien,et al.  CHAPTER 1 – Molecules and Morphology in Studies of Fish Evolution , 1997 .

[40]  Axel Meyer,et al.  Magic bullets and golden rules: data sampling in molecular phylogenetics. , 2005, Zoology.

[41]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[42]  F. Santini,et al.  A phylogeny of the families of fossil and extant tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), Upper Cretaceous to Recent , 2003 .

[43]  Wei‐Jen Chen,et al.  Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. , 2003, Molecular phylogenetics and evolution.

[44]  Charles E. Chapple,et al.  Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.

[45]  Bruce B. Collette,et al.  The Diversity of Fishes , 1997 .

[46]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[47]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[48]  G. Arratia,et al.  Semionotiform fish from the Upper Jurassic of Tendaguru (Tanzania) , 1999 .

[49]  J. C. Regier,et al.  More taxa or more characters revisited: combining data from nuclear protein-encoding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). , 2000, Systematic biology.

[50]  Wiley,et al.  The interrelationships of Acanthomorph fishes: A total evidence approach using molecular and morphological data. , 2000, Biochemical systematics and ecology.

[51]  J. Inoue,et al.  Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. , 2003, Molecular phylogenetics and evolution.

[52]  S. Carroll,et al.  Genome-scale approaches to resolving incongruence in molecular phylogenies , 2003, Nature.

[53]  S. Carroll,et al.  More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. , 2005, Molecular biology and evolution.

[54]  M. Miya,et al.  Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the "Protacanthopterygii". , 2003, Molecular phylogenetics and evolution.

[55]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[56]  A. Westphal,et al.  A Novel Functional Class I Lineage in Zebrafish (Danio rerio), Carp (Cyprinus carpio), and Large Barbus (Barbus intermedius) Showing an Unusual Conservation of the Peptide Binding Domains , 2002, The Journal of Immunology.

[57]  Sudhir Kumar,et al.  Vertebrate Genomes Compared , 2002, Science.

[58]  G. Cowles Studies of Mascarene Island birds: The fossil record , 1987 .

[59]  M. C. D. Pinna,et al.  Chapter 7 – Teleostean Monophyly , 1996 .

[60]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[61]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[62]  M. Sanderson,et al.  Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  L. S. Berg System der rezenten und fossilen Fischartigen und Fische , 1958 .

[64]  D. Gerhold,et al.  It's the genes! EST access to human genome content , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[65]  Axel Meyer,et al.  Novel evolutionary relationship among four fish model systems. , 2004, Trends in genetics : TIG.

[66]  J. Klein,et al.  The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. , 2004, Molecular biology and evolution.

[67]  J. Inoue,et al.  Mitochondrial Genomics of Ostariophysan Fishes: Perspectives on Phylogeny and Biogeography , 2003, Journal of Molecular Evolution.

[68]  J. Inoue,et al.  Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. , 2004, Molecular phylogenetics and evolution.