Molecular orbital theory of the properties of inorganic and organometallic compounds 5. Extended basis sets for first‐row transition metals

A series of efficient split‐valence basis sets for first‐row transition metals, termed 3‐21G, has been constructed based on previously‐formulated minimal expansions of Huzinaga, in which each atomic orbital has been represented by a sum of three gaussians. The original Huzinaga expansions for s‐ and p‐type orbitals (except those for 1s) have been fit by least squares to new three‐gaussian combinations in which the two sets of orbitals (of the same n quantum number) share gaussian exponents. The Huzinaga three‐gaussian expansions for ls and 3d atomic orbitals have been employed without alteration. The valence description of the 3‐21G basis sets comprises 3d‐, 4s‐ and 4p‐type functions, each of which has been split into two‐ and one‐gaussian parts. 4p functions, while not populated in the ground state of the free atoms, are believed to be important to the description of the bonding in molecules. The performance of the 3‐21G basis sets is examined with regard to the calculation of equilibrium geometries and normalmode vibrational frequencies for a variety of inorganic and organometallic compounds containing first‐row transition metals. Calculated equilibrium structures, while generally superior to those obtained at STO‐3G, are not as good as those for compounds containing main‐group elements only. The calculations generally underestimate the lengths of double bonds between transition metals and main‐group elements, and overestimate the lengths of single linkages. Calculated normal‐mode vibrational frequencies for metal‐containing systems are less uniform than in those for main‐group compounds.

[1]  L. Seijo,et al.  Ab initio calculations on transition metal compounds using small minimal GTO basis sets , 1985 .

[2]  J. English,et al.  Electronic structure and vibrational frequency of Cr2 , 1983 .

[3]  A. Laaksonen,et al.  Applicability of the Solomon-Bloembergen equation to the study of paramagnetic transition metal-water complexes. An ab initio SCF-MO study , 1982 .

[4]  T. Iijima,et al.  Nickel tetracarbonyl, Ni(CO)4. I. Molecular structure by gaseous electron diffraction. II. Refinement of quadratic force field , 1979 .

[5]  J. Howell,et al.  Optimized Gaussian basis set for second row transition metals , 1982 .

[6]  L. Halle,et al.  Periodic trends in transition metal-hydrogen, metal-carbon, and metal-oxygen bond dissociation energies. Correlation with reactivity and electronic structure , 1981 .

[7]  Robert K. Bohn,et al.  On the molecular structure of ferrocene, Fe(C5H5)2 , 1966 .

[8]  J. Pople,et al.  Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements , 1982 .

[9]  Nobuaki Koga,et al.  A theoretical study of olefin insertions into titanium-carbon and titanium-hydrogen bonds. An analysis by paired interacting orbitals , 1985 .

[10]  K. Gingerich,et al.  Ab initio HF–CI calculations of the electronic ‘‘band structure’’ in the Fe2 molecule , 1982 .

[11]  S. Langhoff,et al.  Theoretical study of the X2Π and A2Σ+ states of CUO and CUS , 1986 .

[12]  B. Roos,et al.  A theoretical study of NiH Optical spectrum and potential curves , 1982 .

[13]  S. Walch,et al.  Theoretical evidence for multiple one‐electron 3d bonding in a first row transition metal dimer: The 5Σ−u state of Sc2 , 1983 .

[14]  H. Schaefer Approaching the Hartree-Fock limit for organotransition metal complexes , 1981 .

[15]  K. Morokuma,et al.  Role of agostic interaction in .beta.-elimination of palladium and nickel complexes. An ab initio MO study , 1985 .

[16]  B. Roos,et al.  AB initio SCF study of the electronic structure and spectrum of CuF2 , 1983 .

[17]  T. Takada,et al.  Theoretical study of excitation energies of some CoF6n− complexes , 1981 .

[18]  P. W. Jolly,et al.  The organic chemistry of nickel , 1974 .

[19]  G. Ozin,et al.  Methane activation. Photochemical reaction of copper atoms in solid methane , 1981 .

[20]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[21]  M. Hall,et al.  Problems in the theoretical structure of organometallic molecules: generalized molecular orbital, configuration interaction calculations on ferrocene , 1985 .

[22]  M. Blomberg,et al.  An important bound singlet state of NiH2 , 1983 .

[23]  S. Huzinaga,et al.  Basis sets for molecular calculations , 1985 .

[24]  Ni(CO)4 - A test of the Hartree-Fock approximation for transition-metal compounds , 1984 .

[25]  K. Gingerich,et al.  Electronic structure and bonding in the RhC molecule by all-electron ab initio HF–Cl calculations and mass spectrometric measurements , 1984 .

[26]  I. Shim Electronic states of NiFe. Anab initio HF-CI study , 1980 .

[27]  K. Gingerich,et al.  The nature of bonding in PdC , 1982 .

[28]  R. Mynott,et al.  Bis(tetraphenylcyclobutadiene)nickel , 1978 .

[29]  W. Goddard,et al.  Dichlorotitanacyclopropane. The Structure and Reactivity of a Metallacyclopropane , 1985 .

[30]  A. D. McLean Nonrelativistic all electron SCF, MCSCF, and CI calculations on the AgH, AuH, and Ag2 molecules , 1983 .

[31]  M. Hall,et al.  Theoretical comparison between nucleophilic and electrophilic transition metal carbenes using generalized molecular orbital and configuration interaction methods , 1984 .

[32]  A. D. McLean,et al.  RELATIVISTIC EFFECTS ON RE AND DE IN AGH AND AUH FROM ALL-ELECTRON DIRAC HARTREE-FOCK CALCULATIONS , 1982 .

[33]  A. D. McLean,et al.  f-Type functions in the orbital basis for calculating molecular interactions involving d electrons Cr2 and Mo2 , 1983 .

[34]  H. Fujimoto,et al.  A theoretical analysis of catalytic roles by paired interacting orbitals. Palladium(II)-catalyzed nucleophilic additions to carbon-carbon double bonds , 1986 .

[35]  S. Walch,et al.  CASSCF/CI calculations for first row transition metal hydrides: The TiH (4Φ), VH (5Δ), CrH (6Σ+), MnH (7Σ+), FeH (4,6Δ), and NiH (2Δ) states , 1983 .

[36]  C. Bauschlicher On the bonding in Fe2(CO)9 , 1986 .

[37]  A. J. Merer,et al.  The bond length and electronic structure of V2 , 1984 .

[38]  D. E. Powers,et al.  The bond length of chromium dimer , 1982 .

[39]  H. P. Luthi,et al.  An investigation of correlation effects in transition-metal sandwich complexes. Hartree-Fock studies on a series of metallocenes , 1984 .

[40]  K. Gingerich,et al.  A comparative study of the molecules Cu2 and Ag2 by all electron ab initio HF–CI methods , 1983 .

[41]  A. Veillard,et al.  Gaussian basis sets for molecular wavefunctions containing third-row atoms , 1971 .

[42]  P. Bagus,et al.  Electronic structure of transition-metal hydrides: NiH and PdH , 1981 .

[43]  R. Goddard,et al.  Effect upon the hydrogen atoms of bonding an allyl group to a transition metal. A theoretical investigation and an experimental determination using neutron diffraction of the structure of bis(.eta.3-allyl)nickel , 1985 .

[44]  R. Jaffe,et al.  Theoretical study of electron correlation effects in transition metal dimers , 1984 .

[45]  C. Bauschlicher XCN, X Ag, Cu and Ni, a model for CN on a metal surface , 1985 .

[46]  I. H. Hillier,et al.  Correlation effects and the bonding in Mo2 and Cr2 , 1982 .

[47]  J. B. Hopkins,et al.  Supersonic metal cluster beams of refractory metals: Spectral investigations of ultracold Mo2 , 1983 .

[48]  K. Morokuma,et al.  Intramolecular CH...M interaction: theoretical study of the structure of the six-coordinate ethyldiphosphinetitanium complex EtTi(PH3)2X2Y , 1984 .

[49]  L. Pettersson,et al.  Investigations of heavily contracted basis sets and superposition errors for some first- and second-row transition elements , 1982 .

[50]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .

[51]  Robert F. Hout,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds. 2. STO-NG basis sets for fourth-row main-group elements , 1980 .

[52]  H. Nakatsuji,et al.  An initio electronic structures and reactivities of metal carbene complexes; Fischer-type compounds (CO)5Cr=CH(OH) and (CO)4Fe=CH(OH) , 1983 .

[53]  K. Gingerich,et al.  Electronic structure and bonding in the monocarbides in the first platinum metal triad , 1985 .

[54]  W. Hehre,et al.  Hyperconjugation and the structures of metal carbenes , 1983 .

[55]  C. Bauschlicher,et al.  On the nature of the low-lying states of TiO , 1983 .

[56]  W. Goddard,et al.  Electron correlation effects in ligand field parameters and other properties of copper(II) fluoride , 1986 .

[57]  G. Ozin,et al.  Structure and bonding of H3CCuH , 1983 .

[58]  W. Goddard,et al.  Theoretical studies of transition-metal hydrides. 1. Bond energies for MH+ with M = Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn , 1986 .

[59]  W. Hehre,et al.  Conformational preferences in transition-metal carbenes , 1983 .

[60]  R. Kok,et al.  A theoretical investigation of the bond length of dichromium , 1983 .

[61]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[62]  M. Klobukowski,et al.  Well-tempered GTF basis sets for the atoms K through χe , 1985 .

[63]  M. Guest,et al.  The breakdown of the one‐electron picture in the ligand XPES of Mo2 (O2CH)4, Mo2 (O2CCH3)4, and Cr2 (O2CCH3)4 , 1982 .

[64]  W. Goddard,et al.  The "sextuple" bond of chromium dimer , 1981 .

[65]  W. Goddard,et al.  Nature of Mo-Mo and Cr-Cr Multiple Bonds: A Challenge for the Local-Density Approximation , 1982 .

[66]  S. Walch,et al.  On the d bond in ScH , 1982 .

[67]  K. Gingerich,et al.  Interaction between two Co atoms. An all electron ab initio HF–CI investigation , 1983 .

[68]  S. Walch,et al.  CAS SCF Cl calculations for the 3Σ−g, 1Σ+g, 3Σ+u, and 5Δu states of Sc2 , 1983 .

[69]  W. Goddard,et al.  Titanocyclobutane: structural considerations , 1982 .

[70]  F. Cotton,et al.  Bonding in the diruthenium molecule by ab initio calculations , 1982 .

[71]  M. Blomberg,et al.  Theoretical investigation of the addition of molecular hydrogen to Pd and (H2O)2Pd , 1984 .

[72]  W. Goddard,et al.  Hydrocarbon oxidation by high-valent Group VI oxides , 1982 .

[73]  Paul S. Bagus,et al.  The metal-carbonyl bond in Ni(CO) 4 and Fe(CO) 5 : A clear-cut analysis , 1984 .

[74]  R. Schrock,et al.  Multiple metal-carbon bonds. 11. bisneopentylidene complexes of niobium and tantalum , 1978 .

[75]  William A. Goddard,et al.  Flexible d basis sets for Sc through Cu , 1981 .

[76]  Warren J. Hehre,et al.  Computation of electron repulsion integrals involving contracted Gaussian basis functions , 1978 .

[77]  A. Rossi,et al.  Optimized exponents for nickel atom 4s and 4p orbitals obtained from ab initio molecular orbital calculations on tetracarbonylnickel , 1981 .

[78]  S. Walch,et al.  Supplemental basis functions for the second transition row elements , 1983 .

[79]  H. Nakatsuji,et al.  Electronic structures and reactivities of metal-carbon multiple bonds; Schrock-type metal carbene and metal carbyne complexes , 1984 .

[80]  C. Reed,et al.  The first formally three-coordinate d8 complex: tris(triphenylphosphine)rhodium(I) perchlorate and its novel structure , 1977 .

[81]  C. Bauschlicher,et al.  On the low-lying states of TiC , 1984 .

[82]  S. Huzinaga,et al.  A systematic preparation of new contracted Gaussian type orbital set. I. Transition metal atoms from Sc to Zn , 1979 .

[83]  W. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis sets for third‐and fourth‐row, main‐group elements , 1986 .

[84]  W. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds. 3. STO‐3G basis sets for first‐ and second‐row transition metals , 1983 .

[85]  W. Goddard,et al.  Olefin metathesis - a mechanistic study of high-valent Group VI catalysts , 1982 .

[86]  S. Huzinaga GTO basis sets for heavier elements , 1977 .

[87]  C. Bauschlicher,et al.  On the nature of the bonding in Cu2 , 1982 .

[88]  B. Roos,et al.  Theoretical evidence for multiple 3d bondig in the V2 and Cr2 molecules , 1983 .

[89]  K. Gingerich,et al.  An all-electron Hartree—Fock investigation of the electronic structure and nature of bonding in the molecule YPd , 1983 .

[90]  Hans Peter Lüthi,et al.  How well does the Hartree–Fock model predict equilibrium geometries of transition metal complexes? Large‐scale LCAO–SCF studies on ferrocene and decamethylferrocene , 1982 .

[91]  E. Goldstein,et al.  Theoretical study of the bonding in FeM dimers , 1985 .

[92]  Per E. M. Siegbahn,et al.  The effect of electron correlation on the metal—ligand bond in ferrocene , 1984 .

[93]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[94]  E. Miyoshi,et al.  Electronic structure of small copper clusters. I , 1982 .

[95]  W. Goddard,et al.  The 2s + 2s reactions at transition metals. 1. The reactions of deuterium with dichlorohydrotitanium(1+) ion (Cl2TiH+), titanium hydrogen dichloride (Cl2TiH), and scandium hydrogen dichloride (Cl2ScH) , 1984 .

[96]  C. Bauschlicher On the similarity of the bonding in NiS and NiO , 1985 .

[97]  S. Walch,et al.  On incorporation of atomic correlation in transition-metal molecular calculations: NiH , 1982 .

[98]  P. Bagus,et al.  Transition metal oxides: CrO, MoO, NiO, PdO, AgO , 1985 .