Analysis of long-period cosine-wave dispersion in very shallow water using nonlinear Fourier transform based on KdV equation
暂无分享,去创建一个
[1] F. Dias,et al. Extreme wave runup on a vertical cliff , 2013, 1303.2641.
[2] Markus Brühl. Direct and inverse nonlinear Fourier transform based on the Korteweg-deVries equation (KdV-NLFT) - A spectral analysis of nonlinear surface waves in shallow water , 2014 .
[3] Pengzhi Lin,et al. A numerical study of breaking waves in the surf zone , 1998, Journal of Fluid Mechanics.
[4] Anjan Biswas,et al. Adiabatic parameter dynamics of perturbed solitary waves , 2009 .
[5] C.G.J. Jacobi,et al. Suite des notices sur les fonctions elliptiques. , 2022 .
[6] H. Segur,et al. The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments , 1974, Journal of Fluid Mechanics.
[7] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[8] The solitons of Zabusky and Kruskal revisited: perspective in terms of the periodic spectral transform , 1986 .
[9] A. Osborne,et al. The inverse scattering transform: Tools for the nonlinear fourier analysis and filtering of ocean surface waves , 1995 .
[10] R. P. Rohrbaugh. An investigation and analysis of the density and thermal balance of the Martian ionosphere , 1979 .
[11] Conditions for extreme wave runup on a vertical barrier by nonlinear dispersion , 2014, Journal of Fluid Mechanics.
[12] Alfred R. Osborne,et al. Nonlinear Ocean Waves and the Inverse Scattering Transform , 2010 .
[13] H. Vincent Poor,et al. Fast Numerical Nonlinear Fourier Transforms , 2014, IEEE Transactions on Information Theory.
[14] D. Korteweg,et al. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .
[15] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[16] A. R. Osborne. Soliton physics and the periodic inverse scattering transform , 1995 .
[17] Behavior of solitons in random-function solutions of the periodic Korteweg-de Vries equation. , 1993 .
[18] Anjan Biswas,et al. Soliton perturbation theory for nonlinear wave equations , 2010, Appl. Math. Comput..
[19] N. Zabusky,et al. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .