Comparison of performance and degradation of large-scale solid oxide electrolysis cells in stack with different composite air electrodes

[1]  Carl M. Stoots,et al.  HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY , 2005 .

[2]  Y. Bo,et al.  Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and its application for anode of SOEC , 2008 .

[3]  Youkun Tao,et al.  Synthesis and properties of La0.6Sr0.4CoO3−δ nanopowder , 2008 .

[4]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[5]  Y. Zhai,et al.  Preparation of LSM–YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism , 2009 .

[6]  Youkun Tao,et al.  Investigation of precursors in the preparation of nanostructured La0.6Sr0.4Co0.2Fe0.8O3−δ via a modified combined complexing method , 2009 .

[7]  W. Wang,et al.  Alumina Doped Ni/YSZ Anode Materials for Solid Oxide Fuel Cells , 2009 .

[8]  Jian Xin Wang,et al.  Synthesis and properties of (La0.75Sr0.25)0.95MnO3±δ nano-powder prepared via Pechini route , 2009 .

[9]  A. Virkar Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells , 2010 .

[10]  S. Jensen,et al.  Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells , 2010 .

[11]  C. Adjiman,et al.  The Effects of Operating Conditions on the Performance of a Solid Oxide Steam Electrolyser: A Model‐Based Study , 2010 .

[12]  N. Minh Development of Reversible Solid Oxide Fuel Cells (RSOFCs)and Stacks , 2011 .

[13]  S. Ebbesen,et al.  Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability , 2011 .

[14]  Yejian Xue,et al.  Effect of alumina on the curvature, Young's modulus, thermal expansion coefficient and residual stre , 2011 .

[15]  M. Mogensen,et al.  La0.99Co0.4Ni0.6O3−δ–Ce0.8Gd0.2O1.95 as composite cathode for solid oxide fuel cells , 2011 .

[16]  J. Kilner,et al.  Development of oxygen electrodes for reversible solid oxide fuel cells with scandia stabilized zirconia electrolytes , 2011 .

[17]  S. Jiang,et al.  Failure mechanism of (La,Sr)MnO 3 oxygen electrodes of solid oxide electrolysis cells , 2011 .

[18]  L. Jian,et al.  Fabrication and performance evaluation of planar solid oxide fuel cell with large active reaction area , 2011 .

[19]  Chenghao Yang,et al.  La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells , 2011 .

[20]  S. Jiang,et al.  Enhanced electrochemical performance and stability of (La,Sr)MnO3-(Gd,Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration , 2012 .

[21]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[22]  Prabhakar Singh,et al.  LSM–YSZ interactions and anode delamination in solid oxide electrolysis cells , 2012 .

[23]  Boxuan Yu,et al.  Investigation of single SOEC with BSCF anode and SDC barrier layer , 2012 .

[24]  W. Guan,et al.  Temperature Measurement and Distribution Inside Planar SOFC Stacks , 2012 .

[25]  Van Nhu Nguyen,et al.  Long-term tests of a Jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes , 2013 .

[26]  J. O’Brien,et al.  Durability evaluation of reversible solid oxide cells , 2013 .

[27]  E. Wachsman,et al.  Performance of La0.1Sr0.9Co0.8Fe0.2O3−δ and La0.1Sr0.9Co0.8Fe0.2O3−δ–Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells , 2013 .

[28]  W. Wang,et al.  Effect of contact area and depth between cell cathode and interconnect on stack performance for planar solid oxide fuel cells , 2013 .

[29]  Prabhakar Singh,et al.  Mitigation of the delamination of LSM anode in solid oxide electrolysis cells using manganese-modified YSZ , 2013 .

[30]  Xiufu Sun,et al.  Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells , 2013 .

[31]  Guoliang Wang,et al.  Effect and mechanism of Cr deposition in cathode current collecting layer on cell performance inside stack for planar solid oxide fuel cells , 2014 .

[32]  Minfang Han,et al.  Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell , 2014 .

[33]  Minfang Han,et al.  Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3−δ-infiltrated YSZ oxygen electrode for reversible solid oxide fuel cells , 2014 .

[34]  Minfang Han,et al.  Role of initial microstructure on nickel-YSZ cathode degradation in solid oxide electrolysis cells , 2014 .

[35]  Tao Chen,et al.  Quantitative contribution of resistance sources of components to stack performance for solid oxide electrolysis cells , 2015 .