Theoretical π‐π* absorption and circular dichroic spectra of polypeptide β‐structures

Absorption and circular dichroic (CD) spectra of the π‐π* transition near 200 nm are calculated for poly(Gly), poly(Ala), poly(Abu), and poly(Val) in the βP (paralle) and βA (antiparallel) pleated‐sheet structures using the dipole interaction model and including interactions among all atoms; optical parameters were obtained from previous studies of related molecules. Most of the calculations are for structures with one or three chains of six residues each. The oscillator strength and splitting of the π‐π* modes are found to be affected only to a small extent by variations in side‐chain structure and conformation, whereas the CD spectrum is very sensitive to these variations. Poly(Gly) and poly(Ala) β‐structures in uniform, planar lattices do not show sufficient rotational strength to account for observed CD spectra. Poly(Abu) and poly(Val) β‐structures in uniform, planar lattices show rotational strengths comparable to experiment when χ1 is near −60° for βA‐structures or in a broad range near 140° for βP‐structures. Poly(Ala) in uniformly twisted βA‐ and βP‐structures or in irregular βA‐structures corresponding to regions of the crystal structure of concanavalin A also show enhanced rotational strengths in the principal π‐π* CD band. Absorption and CD spectra calculated for poly(Abu) in uniform βA‐ and βP‐structures are compared with experimental data on poly(Lys) in the β‐form, assuming side‐chain conformations in Abu that maximize the intensity of the principal CD band. The calculations for the βA‐form show the better agreement with experiment for both types of spectra.

[1]  G. Fasman,et al.  The β conformation of polypeptides of valine, isoleucine, and threonine in solution and solid‐state: Optical and infrared studies , 1975 .

[2]  L. Brown,et al.  The “Cross-β” structure in polypeptides of low molecular weight , 1960 .

[3]  Max Born,et al.  Optik : ein Lehrbuch der elektromagnetischen Lichttheorie , 1933 .

[4]  Cyrus Chothia,et al.  Conformation of twisted β-pleated sheets in proteins , 1973 .

[5]  F. Salemme,et al.  Conformational and geometrical properties of β-sheets in proteins: I. Parallel β-sheets☆ , 1981 .

[6]  J. Schellman,et al.  Optical activity of polypeptides and proteins , 1972, Biopolymers.

[7]  C. Toniolo,et al.  Solid-state infrared absorption spectra and chain arrangement in some synthetic homooligopeptides in the intermolecularly hydrogen-bonded pleated-sheet beta-conformation. , 1977, Biopolymers.

[8]  W. C. Johnson,et al.  Circular dichroism of polypeptide solutions in the vacuum ultraviolet. , 1972, Journal of the American Chemical Society.

[9]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[10]  F. Salemme,et al.  Conformational and geometrical properties of β-sheets in proteins: II. Antiparallel and mixed β-sheets , 1981 .

[11]  J. Brahms,et al.  Identification of β,β-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism , 1977 .

[12]  A Elliott,et al.  Structure of beta-poly-L-alanine: refined atomic co-ordinates for an anti-parallel beta-pleated sheet. , 1967, Journal of molecular biology.

[13]  E. S. Pysh The calculated ultraviolet optical properties of polypeptide beta-configurations. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Fasman,et al.  The optical rotatory dispersion of two beta structures. , 1967, Biochemical and biophysical research communications.

[15]  H. Mohler,et al.  Chemische Kampfstoffe XVIII. Ultraviolettabsorption und Dipolmomente einiger Modellkörper zu β,β′‐Dichlor‐diäthyl‐sulfid , 1940 .

[16]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[17]  C. Toniolo,et al.  Vacuum ultraviolet circular dichroism of beta-forming alkyl oligopeptides. , 1976, Journal of the American Chemical Society.

[18]  E. S. Pysh Scalar spectral characteristics of one- dimensional solids , 1970 .

[19]  M. Levitt,et al.  Conformation of amino acid side-chains in proteins. , 1978, Journal of molecular biology.

[20]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[21]  R. Woody Optical rotatory properties of biopolymers , 1977 .

[22]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[23]  P. Doty,et al.  The far ultraviolet absorption spectra of polypeptide and protein solutions and their dependence on conformation. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. F. Boys Optical rotatory power. I—A theoretical calculation for a molecule containing only isotropic refractive centres , 1934 .

[25]  S. Ikeda,et al.  Circular dichroism and the pH‐induced β‐coil transition of poly(S‐carboxymethyl‐L‐cysteine) and its side‐chain homolog , 1979 .

[26]  D. Urry,et al.  Ultraviolet rotatory properties of polypeptides in solution. II. Poly-L-serine. , 1968, Journal of the American Chemical Society.

[27]  I. C. O. B. Nomenclature IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols for the description of the conformation of polypeptide chains. Tentative rules (1969). , 1970, Biochemistry.

[28]  Mark L. Olson,et al.  A normal mode treatment of optical properties of a classical coupled dipole oscillator system with Lorentzian band shapes , 1979 .

[29]  R. Woody Optical properties of polypeptides in the β‐conformation , 1969 .

[30]  J. Kirkwood On the Theory of Optical Rotatory Power , 1937 .

[31]  G M Edelman,et al.  The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure. , 1977, The Journal of biological chemistry.

[32]  J. Tanaka,et al.  The exciton states and the hypochromism of polypeptides , 1970 .

[33]  J. Applequist,et al.  A full polarizability treatment of the π–π* absorption and circular dichroic spectra of α‐helical polypeptides , 1979 .

[34]  L. Silberstein,et al.  VII. Molecular refractivity and atomic interaction , 1917 .

[35]  R. D. Mallemann The molecular theory and the calculation of natural rotatory power , 2022 .

[36]  Howard DeVoe,et al.  Optical Properties of Molecular Aggregates. II. Classical Theory of the Refraction, Absorption, and Optical Activity of Solutions and Crystals , 1965 .

[37]  J. Applequist,et al.  Theoretical π‐π* absorption and circular dichroic spectra of helical poly(L‐proline) forms I and II , 1981 .

[38]  J. Brahms,et al.  Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. , 1980, Journal of molecular biology.

[39]  R B Corey,et al.  Two Rippled-Sheet Configurations of Polypeptide Chains, and a Note about the Pleated Sheets. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Rosenheck,et al.  Theory of the Far‐Ultraviolet Spectrum of Polypeptides in the β Conformation , 1967 .

[41]  J. Applequist,et al.  Theoretical π‐π* circular dichroic spectra of helical poly(glycine) and poly(L‐alanine) as functions of backbone torsion angles , 1981, Biopolymers.

[42]  S. Krimm,et al.  The calculated circular dichroism of polyproline ii in the polarizability approximation , 1974, Biopolymers.

[43]  R. Townend The circular dichroism of the ? structure of poly-l-lysine , 1966 .

[44]  S. N. Timasheff,et al.  The circular dichroism of polypeptide films. , 1968, Biochemistry.