On the solutions of a class of tensor equations

In this paper, we are concerned with a class of tensor equations. Some explicit solutions to these equations are obtained. They are extensions of some results given by Lancaster. At the end of the ...

[1]  Changfeng Ma,et al.  Symmetric least squares solution of a class of Sylvester matrix equations via MINIRES algorithm , 2017, J. Frankl. Inst..

[2]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  Ben-Wen Li,et al.  Iterative and direct Chebyshev collocation spectral methods for one-dimensional radiative heat transfer , 2008 .

[5]  Khalide Jbilou,et al.  Golub–Kahan bidiagonalization for ill-conditioned tensor equations with applications , 2020, Numerical Algorithms.

[6]  Linzhang Lu,et al.  A projection method and Kronecker product preconditioner for solving Sylvester tensor equations , 2012, Science China Mathematics.

[7]  Masoud Hajarian,et al.  Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations , 2016, J. Frankl. Inst..

[8]  Masoud Hajarian,et al.  Developing Bi-CG and Bi-CR Methods to Solve Generalized Sylvester-transpose Matrix Equations , 2014, Int. J. Autom. Comput..

[9]  Yi-min Wei,et al.  Backward error and perturbation bounds for high order Sylvester tensor equation , 2013 .

[10]  Fatemeh Panjeh Ali Beik,et al.  On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations , 2016, Numer. Linear Algebra Appl..

[11]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[12]  Harald K. Wimmer,et al.  Solving the Matrix Equation $\sum _{\rho = 1}^r f_\rho (A)Xg_\rho (B) = C$ , 1972 .

[13]  Ben-Wen Li,et al.  Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method , 2010, J. Comput. Phys..

[14]  Baodong Zheng,et al.  Sensitivity analysis of the Lyapunov tensor equation , 2019 .

[15]  W. Niethammer,et al.  SOR for AX−XB=C , 1991 .

[16]  James Lam,et al.  On Smith-type iterative algorithms for the Stein matrix equation , 2009, Appl. Math. Lett..

[17]  Rita Simões,et al.  On the Lyapunov and Stein equations , 2007 .

[18]  P. Lancaster Explicit Solutions of Linear Matrix Equations , 1970 .

[19]  Huamin Zhang,et al.  Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester matrix equations , 2017, Comput. Math. Appl..

[20]  M. Hajarian Lanczos version of BCR algorithm for solving the generalised second-order Sylvester matrix equation E V F + G V H + B V C = D W E + M , 2017 .

[21]  Charles R. Johnson,et al.  Possible inertia combinations in the Stein and Lyapunov equations , 1995 .

[22]  Daniel Kressner,et al.  A preconditioned low‐rank CG method for parameter‐dependent Lyapunov matrix equations , 2014, Numer. Linear Algebra Appl..

[23]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[24]  Paul A. Fuhrmann,et al.  A functional approach to the Stein equation , 2010 .

[25]  Baodong Zheng,et al.  Algebraic Lyapunov and Stein stability results for tensors , 2018 .

[26]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[27]  NGUYEN THANH SON,et al.  Solving Parameter-Dependent Lyapunov Equations Using the Reduced Basis Method with Application to Parametric Model Order Reduction , 2017, SIAM J. Matrix Anal. Appl..

[28]  M. Bollhöfer,et al.  Low-Rank Cholesky Factor Krylov Subspace Methods for Generalized Projected Lyapunov Equations , 2017 .

[29]  Ezra Zeheb,et al.  On solving the Lyapunov and Stein equations for a companion matrix , 1995 .