Multiwavelength characterization of the accreting millisecond X-ray pulsar and ultracompact binary IGR J17062–6143

IGR J17062–6143 is an ultracompact X-ray binary (UCXB) with an orbital period of 37.96 min. It harbours a millisecond X-ray pulsar that is spinning at 163 Hz and and has continuously been accreting from its companion star since 2006. Determining the composition of the accreted matter in UCXBs is of high interest for studies of binary evolution and thermonuclear burning on the surface of neutron stars. Here, we present a multiwavelength study of IGR J17062–6143 aimed to determine the detailed properties of its accretion disc and companion star. The multi-epoch photometric UV to near-infrared spectral energy distribution (SED) is consistent with an accretion disc Fν ∝ ν1/3. The SED modelling of the accretion disc allowed us to estimate an outer disc radius of $R_{\rm out} = 2.2^{+0.9}_{-0.4} \times 10^{10}$ cm and a mass-transfer rate of $\dot{m} = 1.8^{+1.8}_{-0.5}\times 10^{-10}$ M⊙ yr−1. Comparing this with the estimated mass-accretion rate inferred from its X-ray emission suggests that ≳90 per cent of the transferred mass is lost from the system. Moreover, our SED modelling shows that the thermal emission component seen in the X-ray spectrum is highly unlikely from the accretion disc and must therefore represent emission from the surface of the neutron star. Our low-resolution optical spectrum revealed a blue continuum and no emission lines, i.e. lacking H and He features. Based on the current data we cannot conclusively identify the nature of the companion star, but we make recommendations for future study that can distinguish between the different possible evolution histories of this X-ray binary. Finally, we demonstrate how multiwavelength observations can be effectively used to find more UCXBs among the LMXBs.

[1]  P. Bult,et al.  NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143 , 2018, 1808.04392.

[2]  A. Zdziarski,et al.  Non-conservative mass transfer in stellar evolution and the case of V404 Cyg/GS 2023+338 , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  J. Lasota,et al.  Strong disk winds traced throughout outbursts in black-hole X-ray binaries , 2018, Nature.

[4]  C. Messenger,et al.  The very-faint X-ray binary IGR J17062-6143: a truncated disk, no pulsations and a possible outflow , 2017, 1712.03949.

[5]  L. Burderi,et al.  Evidence of a non-conservative mass transfer for XTE J0929-314 , 2017, 1707.04453.

[6]  N. Langer,et al.  Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars , 2017, 1704.08260.

[7]  L. Keek,et al.  IGR J17062–6143 Is an Accreting Millisecond X-Ray Pulsar , 2017, 1702.05449.

[8]  L. Natalucci,et al.  A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with NuStar , 2017, 1701.01774.

[9]  T. E. Strohmayer,et al.  X-Ray Reflection and an Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143 , 2016, 1610.07608.

[10]  A. Fabian,et al.  An in-depth study of a neutron star accreting at low Eddington rate: On the possibility of a truncated disc and an outflow , 2016, 1609.04816.

[11]  J. Lasota,et al.  Outbursts in ultracompact X-ray binaries , 2016, 1607.06394.

[12]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[13]  P. Bult,et al.  The magnetic-field strengths of accreting millisecond pulsars , 2015, 1507.02138.

[14]  R. Wijnands,et al.  Low-level accretion in neutron star X-ray binaries , 2014, 1409.6265.

[15]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[16]  Stephen A. Smee,et al.  FourStar: The Near-Infrared Imager for the 6.5 m Baade Telescope at Las Campanas Observatory , 2013 .

[17]  R. Wijnands,et al.  The X-ray spectral properties of very-faint persistent neutron star X-ray binaries , 2013, 1303.6640.

[18]  R. Starling,et al.  Calibration of X-ray absorption in our Galaxy , 2013, 1303.0843.

[19]  A. Fabian,et al.  X-RAY EMISSION AND ABSORPTION FEATURES DURING AN ENERGETIC THERMONUCLEAR X-RAY BURST FROM IGR J17062−6143 , 2012, 1212.4869.

[20]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[21]  Sarah Kendrew,et al.  THE MILKY WAY PROJECT: A STATISTICAL STUDY OF MASSIVE STAR FORMATION ASSOCIATED WITH INFRARED BUBBLES , 2012, 1203.5486.

[22]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[23]  G. Ponti,et al.  Ubiquitous equatorial accretion disc winds in black hole soft states , 2012, 1201.4172.

[24]  I. Zolotukhin,et al.  Period--luminosity relation for persistent LMXBs in the near-infrared , 2012, 1201.1369.

[25]  E. L. Robinson,et al.  MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE , 2011, 1109.1813.

[26]  T. Maccarone,et al.  X-ray softening in the new X-ray transient XTE J1719-291 during its 2008 outburst decay , 2011, 1104.3423.

[27]  A. Fabian,et al.  X-ray Reflection , 2010 .

[28]  G. Curto,et al.  Multiwavelength observations of 1RXH J173523.7-354013: revealing an unusual bursting neutron star , 2010, 1001.3688.

[29]  G. Nelemans,et al.  The chemical composition of donors in AM CVn stars and ultracompact X-ray binaries: observational tests of their formation , 2009, 0909.3376.

[30]  Canada.,et al.  What ignites on the neutron star of 4U 0614+091? , 2009, 0909.3391.

[31]  T. E. Strohmayer,et al.  RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS , 2009, 0908.1098.

[32]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[33]  D. Steeghs,et al.  Phase-resolved spectroscopy of the accreting millisecond X-ray pulsar SAX J1808.4-3658 during the 2008 outburst , 2008, 0812.3032.

[34]  L. Burderi,et al.  Magnetic-driven Orbital Evolution of an Accreting Millisecond Pulsar: Witnessing the Banquet of a Hidden Black Widow , 2007, 0708.0498.

[35]  Harvard-Smithsonian CfA,et al.  Evidence for a jet contribution to the optical/infrared light of neutron star X-ray binaries , 2007, 0705.3611.

[36]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[37]  P. Jonker,et al.  Six new candidate ultracompact X-ray binaries , 2007, astro-ph/0701810.

[38]  R. Taam,et al.  Thermal Evolution of AM CVn Binary Donors , 2006, astro-ph/0610609.

[39]  Harvard,et al.  Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions , 2006, astro-ph/0606721.

[40]  G. Nelemans,et al.  Ultra-compact (X-ray) binaries , 2006, astro-ph/0605722.

[41]  G. Nelemans,et al.  Optical spectroscopy of (candidate) ultracompact X-ray binaries: constraints on the composition of the donor stars , 2006, astro-ph/0604597.

[42]  P. A. Charles,et al.  Compact Stellar X-Ray Sources: Optical, ultraviolet and infrared observations of X-ray binaries , 2006 .

[43]  T. Rauch,et al.  VLT spectroscopy and non-LTE modeling of the C/O-dominated accretion disks in two ultracompact X-ray binaries , 2006, astro-ph/0601546.

[44]  A. Cumming,et al.  Long Type I X-Ray Bursts and Neutron Star Interior Physics , 2005, astro-ph/0508432.

[45]  A. Cumming,et al.  On the possibility of a helium white dwarf donor in the presumed ultracompact binary 2S 0918-549 , 2005, astro-ph/0506666.

[46]  G. Nelemans,et al.  Optical spectra of the carbon-oxygen accretion discs in the ultra-compact X-ray binaries 4U 0614+09, 4U 1543-624 and 2S 0918-549 , 2003, astro-ph/0312008.

[47]  J. Centrella THE ASTROPHYSICS OF GRAVITATIONAL WAVE SOURCES , 2003 .

[48]  L. Bildsten,et al.  White Dwarf Donors in Ultracompact Binaries: The Stellar Structure of Finite-Entropy Objects , 2003, astro-ph/0308233.

[49]  A. Cumming Models of Type I X-Ray Bursts from 4U 1820–30 , 2003, astro-ph/0306245.

[50]  W. Harris,et al.  Photospheric radius expansion X-ray bursts as standard candles , 2002, astro-ph/0212028.

[51]  A. King,et al.  The ultraviolet line spectrum of the soft X-ray transient XTE J1118+480: a CNO-processed core exposed , 2002, astro-ph/0202349.

[52]  S. Corbel,et al.  A Closer Look at the Soft X-Ray Transient X1608–52: Long-Term Optical and X-Ray Observations , 2001, astro-ph/0112465.

[53]  N. Schulz,et al.  Double-peaked X-Ray Lines from the Oxygen/Neon-rich Accretion Disk in 4U 1626–67 , 2001, astro-ph/0108208.

[54]  R. Wijnands,et al.  A millisecond pulsar in an X-ray binary system , 1998, Nature.

[55]  E. Morgan,et al.  The two-hour orbit of a binary millisecond X-ray pulsar , 1998, Nature.

[56]  D. Chakrabarty High-Speed Optical Photometry of the Ultracompact X-Ray Binary 4U 1626–67 , 1997, astro-ph/9706049.

[57]  Y. Osaki,et al.  Disk Instability Model for the AM Canum Venaticorum Stars , 1997 .

[58]  S. Rappaport,et al.  Mass Transfer Instabilities Due to Angular Momentum Flows in Close Binaries , 1988 .

[59]  S. Rappaport,et al.  The evolution of ultrashort period binary systems , 1986 .

[60]  Bohdan Paczynski,et al.  A model of accretion disks in close binaries. , 1977 .

[61]  D. Gelino,et al.  A population explosion : the nature & evolution of X-ray binaries in diverse environments : St. Pete Beach, Florida, 28 October-2 November 2007 , 2008 .

[62]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[63]  D. Raine,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[64]  D. Raine,et al.  Accretion Power in Astrophysics: Third Edition , 2002 .

[65]  D. C. hakrabarty,et al.  Double-peaked X-ray Lines from the Oxygen/neon-rich Accretion Disk in 4u 1626−67 , 2001 .

[66]  L. Bildsten The Fate of Accreted CNO Elements in Neutron Star Atmospheres , 1992 .

[67]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[68]  D. Lynden-Bell,et al.  Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.