Robustness of optimal design of fMRI experiments with application of a genetic algorithm

In this paper we apply the genetic algorithm developed by Kao et al. (2009) to find designs which are robust against misspecification of the error autocorrelation. Two common optimality criteria, the A-optimality criterion and the D-optimality criterion, based upon a general linear model are employed to obtain locally optimal designs for a given value of the autocorrelation. The maximin criterion is then used to obtain designs which are robust against misspecification of the autocorrelation. Furthermore, robustness depending on the choice of optimality criterion is evaluated. We show analytically and empirically that the A- and D-optimality criterion will result in different optimal designs, e.g. with different stimulus frequencies. Optimal stimulus frequency for the A-optimality criterion has been derived by Liu et al. (2004) whereas we derive here the optimal stimulus frequency for the D-optimality criterion. Conclusions about the robustness of an optimal design against misspecification of model parameters and choice of optimality criterion are drawn based upon our results.

[1]  John C. Gore,et al.  ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects , 1999, NeuroImage.

[2]  Thomas T. Liu,et al.  Efficiency, power, and entropy in event-related FMRI with multiple trial types Part I: theory , 2004, NeuroImage.

[3]  F. Giesel,et al.  Methodische Grundlagen der Optimierung funktioneller MR-Experimente , 2005, Der Radiologe.

[4]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[5]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[6]  R. Cox,et al.  Event‐related fMRI contrast when using constant interstimulus interval: Theory and experiment , 2000, Magnetic resonance in medicine.

[7]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[8]  Thomas E. Nichols,et al.  Optimization of experimental design in fMRI: a general framework using a genetic algorithm , 2003, NeuroImage.

[9]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[10]  J. Sanes,et al.  Improved Detection of Event-Related Functional MRI Signals Using Probability Functions , 2001, NeuroImage.

[11]  Richard N. Henson,et al.  CHAPTER 15 – Efficient Experimental Design for fMRI , 2007 .

[12]  Karl J. Friston,et al.  Stochastic Designs in Event-Related fMRI , 1999, NeuroImage.

[13]  Abhyuday Mandal,et al.  Multi-objective optimal experimental designs for event-related fMRI studies , 2009, NeuroImage.

[14]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[15]  Thomas T. Liu,et al.  Part II: design of experiments , 2022 .

[16]  Mark W. Woolrich,et al.  Meaningful design and contrast estimability in FMRI , 2007, NeuroImage.

[17]  R. Buxton,et al.  Detection Power, Estimation Efficiency, and Predictability in Event-Related fMRI , 2001, NeuroImage.

[18]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[19]  Marc M. Van Hulle,et al.  Estimating the global order of the fMRI noise model , 2005, NeuroImage.

[20]  Peter A. Bandettini,et al.  Detection versus Estimation in Event-Related fMRI: Choosing the Optimal Stimulus Timing , 2002, NeuroImage.

[21]  Geoffrey M. Boynton,et al.  Efficient Design of Event-Related fMRI Experiments Using M-Sequences , 2002, NeuroImage.

[22]  M. Berger,et al.  Robust designs for linear mixed effects models , 2004 .

[23]  M. D’Esposito,et al.  Experimental Design for Brain fMRI , 2000 .