Linking Linear Threshold Units with Quadratic Models of Motion Perception

Behavioral experiments on insects (Hassenstein and Reichardt 1956; Poggio and Reichardt 1976) as well as psychophysical evidence from human studies (Van Santen and Sperling 1985; Adelson and Bergen 1985; Watson and Ahumada 1985) support the notion that short-range motion perception is mediated by a system with a quadratic type of nonlinearity, as in correlation (Hassenstein and Reichardt 1956), multiplication (Torre and Poggio 1978), or squaring (Adelson and Bergen 1985). However, there is little physiological evidence for quadratic nonlinearities in directionally selective cells. For instance, the response of cortical simple cells to a moving sine grating is half-wave instead of full-wave rectified as it should be for a quadratic nonlinearity (Movshon ef al. 1978; Holub and Morton-Gibson 1981) and is linear for low contrast (Holub and Morton-Gibson 1981). Complex cells have full-wave rectified responses, but are also linear in contrast. Moreover, a detailed theoretical analysis of possible biophysical mechanisms underlying direction selectivity concludes that most do not have quadratic properties except under very limited conditions (Grzywacz and Koch 1987). Thus, it is presently mysterious how a system can show quadratic properties while its individual components do not. We briefly discuss here a simple population encoding scheme offering a possible solution to this problem.

[1]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[2]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[3]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[4]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[5]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[6]  C. Koch,et al.  Functional properties of models for direction selectivity in the retina , 1987, Synapse.

[7]  R. Holub,et al.  Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. , 1981, Journal of neurophysiology.

[8]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[9]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.