Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review

[1]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[2]  K. S. Kim,et al.  Olefinic vs. aromatic pi-H interaction: a theoretical investigation of the nature of interaction of first-row hydrides with ethene and benzene. , 2001, Journal of the American Chemical Society.

[3]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[4]  Mohammed M. Farid,et al.  A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials , 2021, Thermal Energy Storage with Phase Change Materials.

[5]  D. Milkie,et al.  Carbon Nanotube Aerogels , 2007 .

[6]  V. V. Tyagi,et al.  PCM thermal storage in buildings: A state of art , 2007 .

[7]  Arun S. Mujumdar,et al.  Application of phase change materials in thermal management of electronics , 2007 .

[8]  Hongfa Di,et al.  Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook , 2007 .

[9]  K. Lafdi,et al.  Carbon nanoadditives to enhance latent energy storage of phase change materials , 2008 .

[10]  Zhengguo Zhang,et al.  Preparation and characterization of novel nanoencapsulated phase change materials , 2008 .

[11]  A. Sari,et al.  Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage , 2008 .

[12]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[13]  T. Akiyama,et al.  Impregnation of porous material with phase change material for thermal energy storage , 2009 .

[14]  A. Sari,et al.  Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material , 2009 .

[15]  A. Sari,et al.  Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage , 2010 .

[16]  Ruzhu Wang,et al.  Preparation and thermal characterization of expanded graphite/paraffin composite phase change material , 2010 .

[17]  Hideki Tanaka,et al.  Unveiling thermal transitions of polymers in subnanometre pores , 2010, Nature communications.

[18]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[19]  A. Bismarck,et al.  Carbon nanotube-based hierarchical composites: a review , 2010 .

[20]  Jianjun Hu,et al.  Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions. , 2010, Nanoscale.

[21]  Y. Lei,et al.  In Situ Synthesis and Phase Change Properties of Na2SO4·10H2O@SiO2 Solid Nanobowls toward Smart Heat Storage , 2011 .

[22]  A. Sari,et al.  Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage , 2011 .

[23]  Dan Zhao,et al.  Tuning the topology and functionality of metal-organic frameworks by ligand design. , 2011, Accounts of chemical research.

[24]  C. Serre,et al.  Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. , 2011, Chemical communications.

[25]  Sarah L. Frisco,et al.  The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41) , 2011 .

[26]  L. Chow,et al.  Jet impingement and spray cooling using slurry of nanoencapsulated phase change materials , 2011 .

[27]  Xingrong Zeng,et al.  Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier , 2012 .

[28]  C. Dimitrakopoulos,et al.  Graphene : synthesis and applications , 2012 .

[29]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[30]  Lin Pan,et al.  Preparation, characterization and thermal properties of micro-encapsulated phase change materials , 2012 .

[31]  Zhongpin Zhang,et al.  Controlled heat release of new thermal storage materials: the case of polyethylene glycol intercalated into graphene oxide paper , 2012 .

[32]  Jinlong Zhu,et al.  Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. , 2012, ACS nano.

[33]  Changying Zhao,et al.  Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage , 2012 .

[34]  K. Matyjaszewski,et al.  Design and preparation of porous polymers. , 2012, Chemical reviews.

[35]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[36]  Dan Zhou,et al.  Review on thermal energy storage with phase change materials (PCMs) in building applications , 2012 .

[37]  A. Sari,et al.  New kinds of energy-storing building composite PCMs for thermal energy storage , 2013 .

[38]  R. Frost,et al.  Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials , 2013 .

[39]  M. S. Naghavi,et al.  Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material , 2013 .

[40]  Kamaruzzaman Sopian,et al.  CFD applications for latent heat thermal energy storage: a review , 2013 .

[41]  Peng Zhang,et al.  Preparation and thermal characterization of paraffin/metal foam composite phase change material , 2013 .

[42]  Zongjin Li,et al.  Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage , 2013 .

[43]  Z. Bao,et al.  A review of fabrication and applications of carbon nanotube film-based flexible electronics. , 2013, Nanoscale.

[44]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[45]  Wenzhong Shen,et al.  Nitrogen-containing porous carbons: synthesis and application , 2013 .

[46]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[47]  Si-Han Wu,et al.  Synthesis of mesoporous silica nanoparticles. , 2013, Chemical Society reviews.

[48]  Zhongpin Zhang,et al.  Diverting phase transition of high-melting-point stearic acid to room temperature by microencapsulation in boehmite , 2013 .

[49]  M. G. Cortázar,et al.  Thermal storage nanocapsules by miniemulsion polymerization , 2013 .

[50]  K. Ariga,et al.  A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications , 2013 .

[51]  Yajuan Zhong,et al.  Effect of graphene aerogel on thermal behavior of phase change materials for thermal management , 2013 .

[52]  Paulo Santos,et al.  Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency , 2013 .

[53]  Wei Li,et al.  Novel phase change behavior of n-eicosane in nanoporous silica: emulsion template preparation and structure characterization using small angle X-ray scattering. , 2013, Physical chemistry chemical physics : PCCP.

[54]  Zhongpin Zhang,et al.  Increasing Phase Change Latent Heat of Stearic Acid via Nanocapsule Interface Confinement , 2013 .

[55]  Shengyang Tao,et al.  Phase change in modified hierarchically porous monolith: An extra energy increase , 2014 .

[56]  T. Bein,et al.  Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery , 2014 .

[57]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[58]  S. M. Sadrameli,et al.  A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium , 2014 .

[59]  Jung-Hyun Kim,et al.  Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell , 2014 .

[60]  M. Ogura,et al.  Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3. , 2014, Physical chemistry chemical physics : PCCP.

[61]  K. Liao,et al.  From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials , 2014 .

[62]  Wei Xia,et al.  Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage , 2014 .

[63]  Jack D. Evans,et al.  Post-synthetic metalation of metal-organic frameworks. , 2014, Chemical Society reviews.

[64]  Hong Liu,et al.  Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. , 2014, Nanoscale.

[65]  Hong Ye,et al.  The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index , 2014 .

[66]  G. Fang,et al.  Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials , 2014 .

[67]  M. Kenisarin Thermophysical properties of some organic phase change materials for latent heat storage. A review , 2014 .

[68]  A. Biçer,et al.  Latent heat energy storage characteristics of building composites of bentonite clay and pumice sand with different organic PCMs , 2014 .

[69]  R. Ruoff,et al.  Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage , 2014 .

[70]  Zhongpin Zhang,et al.  Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices. , 2015, Nanoscale.

[71]  Yi-min Li,et al.  Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement , 2015 .

[72]  M. Fang,et al.  Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage , 2015, Scientific Reports.

[73]  A. M. Goitandia,et al.  Development of content-stable phase change composites by infiltration into inorganic porous supports , 2015 .

[74]  Dang Wu,et al.  Preparation and characterization of side-chain liquid crystal polymer/paraffin composites as form-stable phase change materials , 2015 .

[75]  Shibing Ye,et al.  Core–shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage , 2015 .

[76]  S. Nada,et al.  Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment , 2015 .

[77]  He Tian,et al.  Controllable Thermal Rectification Realized in Binary Phase Change Composites , 2015, Scientific Reports.

[78]  T. Akiyama,et al.  Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2 , 2015 .

[79]  T. Mahlia,et al.  Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method , 2015 .

[80]  Ray P. S. Han,et al.  Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels , 2015 .

[81]  Wei Xia,et al.  Electro/photo to heat conversion system based on polyurethane embedded graphite foam☆ , 2015 .

[82]  Hanxue Sun,et al.  Graphene–nickel/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage , 2015 .

[83]  A. Sari Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings , 2015 .

[84]  J. Darkwa,et al.  Review of solid–liquid phase change materials and their encapsulation technologies , 2015 .

[85]  Zhengdong Cheng,et al.  Nano-encapsulated PCM via Pickering Emulsification , 2015, Scientific Reports.

[86]  S. Nada,et al.  Comprehensive parametric study of using carbon foam structures saturated with PCMs in thermal management of electronic systems , 2015 .

[87]  A. Babapoor,et al.  Thermal management of a Li-ion battery using carbon fiber-PCM composites , 2015 .

[88]  H. Paksoy,et al.  Review on using microencapsulated phase change materials (PCM) in building applications , 2015 .

[89]  S. Liang,et al.  Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage , 2015 .

[90]  R. Ruoff,et al.  Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. , 2015, ACS nano.

[91]  C. Munteanu,et al.  Evaluation of Different Mesoporous Silica Supports for Energy Storage in Shape-Stabilized Phase Change Materials with Dual Thermal Responses , 2015 .

[92]  H. Sharon,et al.  A review of solar energy driven desalination technologies , 2015 .

[93]  R. K. Sharma,et al.  Developments in organic solid–liquid phase change materials and their applications in thermal energy storage , 2015 .

[94]  M. S. Naghavi,et al.  A state-of-the-art review on hybrid heat pipe latent heat storage systems , 2015 .

[95]  J. Fang,et al.  From anisotropic graphene aerogels to electron- and photo-driven phase change composites , 2016 .

[96]  Z. Khan,et al.  A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility , 2016 .

[97]  Huili Zhang,et al.  Thermal energy storage: Recent developments and practical aspects , 2016 .

[98]  Guixiang Ma,et al.  Diverting the phase transition behaviour of adipic acid via mesoporous silica confinement , 2016 .

[99]  Ming-Chang Lu,et al.  Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles , 2016 .

[100]  Eleni Ampatzi,et al.  Latent heat storage in building elements: A systematic review on properties and contextual performance factors , 2016 .

[101]  Luisa F. Cabeza,et al.  Computational efficiency in numerical modeling of high temperature latent heat storage: Comparison of selected software tools based on experimental data , 2016 .

[102]  Ming-Jian Yang,et al.  Imine-linked micron-network polymers with high polyethylene glycol uptake for shaped-stabilized phase change materials , 2016 .

[103]  Matjaz Perc,et al.  Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: A review , 2016, Biosyst..

[104]  Hongyi Gao,et al.  Introduction of an organic acid phase changing material into metal–organic frameworks and the study of its thermal properties , 2016 .

[105]  Małgorzata Jurkowska,et al.  Review on properties of microencapsulated phase change materials slurries (mPCMS) , 2016 .

[106]  Yunfeng Lu,et al.  Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials , 2016 .

[107]  Mengmeng Yu,et al.  Supply–demand balancing for power management in smart grid: A Stackelberg game approach , 2016 .

[108]  Ming Yang,et al.  Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity , 2016 .

[109]  Prashant Baredar,et al.  Solar–wind hybrid renewable energy system: A review , 2016 .

[110]  Javier Serrano González,et al.  A review of regulatory framework for wind energy in European Union countries: Current state and expected developments , 2016 .

[111]  Yali Li,et al.  Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer , 2016 .

[112]  L. Cabeza,et al.  Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review , 2016 .

[113]  Peng Zhang,et al.  Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam , 2017 .

[114]  Shufen Zhang,et al.  Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage , 2017 .

[115]  T. Bein,et al.  Talented Mesoporous Silica Nanoparticles , 2017 .

[116]  Hongyi Gao,et al.  Shape‐Stabilized Phase Change Materials Based on Stearic Acid and Mesoporous Hollow SiO2 Microspheres (SA/SiO2) for Thermal Energy Storage , 2017 .

[117]  Rahman Saidur,et al.  A review on supercooling of Phase Change Materials in thermal energy storage systems , 2017 .

[118]  G. Fang,et al.  Morphological characterization and applications of phase change materials in thermal energy storage: A review , 2017 .

[119]  M. Fang,et al.  Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings , 2017 .

[120]  F. Tezel,et al.  A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications , 2017 .

[121]  R. Zou,et al.  The Application of Carbon Materials in Latent Heat Thermal Energy Storage (LHTES) , 2017 .

[122]  PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage , 2017 .

[123]  Yunfeng Lu,et al.  Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat , 2017 .

[124]  Wei Yang,et al.  Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. , 2017, Nanoscale.

[125]  Sverker Molander,et al.  Introducing ocean energy industries to a busy marine environment , 2017 .

[126]  Aun Haider,et al.  Review of ocean tidal, wave and thermal energy technologies , 2017 .

[127]  Zhengbao Zha,et al.  Multifunctional phase-change hollow mesoporous Prussian blue nanoparticles as a NIR light responsive drug co-delivery system to overcome cancer therapeutic resistance. , 2017, Journal of materials chemistry. B.

[128]  T. Baumann,et al.  Carbon aerogel evolution: Allotrope, graphene-inspired, and 3D-printed aerogels , 2017 .

[129]  Zhengguo Zhang,et al.  A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy , 2017, Nanotechnology.

[130]  Chao Yuan,et al.  Passive thermal management system for downhole electronics in harsh thermal environments , 2017 .

[131]  S. S. Chandel,et al.  Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials , 2017 .

[132]  Ge Wang,et al.  1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage , 2017 .

[133]  Hongyi Gao,et al.  A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage , 2017 .

[134]  Fredrik Haglind,et al.  A review of solar energy based heat and power generation systems , 2017 .

[135]  Hongyi Gao,et al.  Porous organic–inorganic hybrid xerogels for stearic acid shape-stabilized phase change materials , 2017 .

[136]  J. A. Esfahani,et al.  A review on the applications of porous materials in solar energy systems , 2017 .

[137]  Xiaowei Chen,et al.  Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. , 2018, Biomaterials.

[138]  Ang Li,et al.  Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity , 2018, Chemical Engineering Journal.

[139]  Chen Wang,et al.  Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability , 2018 .

[140]  Ang Li,et al.  Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity , 2018 .

[141]  Yingni Yang,et al.  Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving , 2018 .

[142]  Bikash Kumar Sahu Wind energy developments and policies in China: A short review , 2018 .

[143]  Ang Li,et al.  Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting , 2018, Nano Energy.

[144]  A. Mahmood,et al.  Nanoconfined phase change materials for thermal energy applications , 2018 .

[145]  Xin Min,et al.  Integration of Pore Confinement and Hydrogen-Bond Influence on the Crystallization Behavior of C18 PCMs in Mesoporous Silica for Form-Stable Phase Change Materials , 2018 .

[146]  Hongyi Gao,et al.  Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity , 2018 .

[147]  Hongyi Gao,et al.  One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity , 2018, Solar Energy Materials and Solar Cells.

[148]  Wei Yang,et al.  Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials , 2018, Energy Storage Materials.

[149]  E. Shchukina,et al.  Nanoencapsulation of phase change materials for advanced thermal energy storage systems , 2018, Chemical Society reviews.