Regularity lemmas for clustering graphs

Abstract For a graph G with a positive clustering coefficient C, it is proved that for any positive constant ϵ, the vertex set of G can be partitioned into finitely many parts, say S 1 , S 2 , … , S m , such that all but an ϵ fraction of the triangles in G are contained in the projections of tripartite subgraphs induced by ( S i , S j , S k ) which are ϵ-Δ-regular, where the size m of the partition depends only on ϵ and C. The notion of ϵ-Δ-regular, which is a variation of ϵ-regular for the original regularity lemma, concerns triangle density instead of edge density. Several generalizations and variations of the regularity lemma for clustering graphs are derived.

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[3]  Fan Chung Graham,et al.  Quasi-Random Hypergraphs , 1990, Random Struct. Algorithms.

[4]  Alex D. Scott,et al.  Szemerédi's Regularity Lemma for Matrices and Sparse Graphs , 2010, Combinatorics, Probability and Computing.

[5]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[6]  Tim Roughgarden,et al.  Decompositions of Triangle-Dense Graphs , 2016, SIAM J. Comput..

[7]  Fan Chung Graham,et al.  Sparse Quasi-Random Graphs , 2002, Comb..

[8]  R. Luce,et al.  A method of matrix analysis of group structure , 1949, Psychometrika.

[9]  Fan Chung,et al.  Regularity lemmas for hypergraphs and quasi-randomness , 1991 .

[10]  Moses Charikar,et al.  Greedy approximation algorithms for finding dense components in a graph , 2000, APPROX.

[11]  Fan Chung Graham,et al.  Regularity Lemmas for Hypergraphs and Quasi-randomness , 1991, Random Struct. Algorithms.

[12]  Reid Andersen,et al.  A local algorithm for finding dense subgraphs , 2007, TALG.

[13]  Jacob Fox,et al.  A tight lower bound for Szemerédi’s regularity lemma , 2017, Comb..

[14]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[15]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[16]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[17]  Ben Green,et al.  An Arithmetic Regularity Lemma, An Associated Counting Lemma, and Applications , 2010, 1002.2028.

[18]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[19]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[20]  Jure Leskovec,et al.  Statistical properties of community structure in large social and information networks , 2008, WWW.

[21]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[22]  Alan M. Frieze,et al.  A Simple Algorithm for Constructing Szemere'di's Regularity Partition , 1999, Electron. J. Comb..