Dynamic modelling for thermal micro-actuators using thermal networks

Thermal actuators are extensively used in microelectromechanical systems (MEMS). Heat transfer through and around these microstructures are very complex. Knowing and controlling them in order to improve the performance of the micro-actuator, is currently a great challenge. This paper deals with this topic and proposes a dynamic thermal modelling of thermal micro-actuators. Thermal problems may be modelled using electrical analogy. However, current equivalent electrical models (thermal networks) are generally obtained considering only heat transfers through the thickness of structures having considerable height and length in relation to width (walls). These models cannot be directly applied to micro-actuators. In fact, micro-actuator configurations are based on 3D beam structures, and heat transfers occur through and around length. New dynamic and static thermal networks are then proposed in this paper. The validities of both types of thermal networks have been studied. They are successfully validated by comparison with finite elements simulation and analytical calculations.

[1]  Paolo Maffezzoni,et al.  Compact modeling of electrical devices for electrothermal analysis , 2003 .

[2]  J. M. Coulson,et al.  Heat Transfer , 2018, A Concise Manual of Engineering Thermodynamics.

[3]  N. Nguyen,et al.  A polymeric microgripper with integrated thermal actuators , 2004 .

[4]  Kenneth E. Goodson,et al.  Investigation of the natural convection boundary condition in microfabricated structures , 2008 .

[5]  M. Shikida,et al.  Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications , 2005 .

[6]  Amir Khajepour,et al.  Design and modeling of a MEMS bidirectional vertical thermal actuator , 2004 .

[7]  Rongshun Chen,et al.  A novel electro-thermally driven bi-directional microactuator , 2002, Proceedings of 2002 International Symposium on Micromechatronics and Human Science.

[8]  Ping Zhang,et al.  Design Tradeoffs for Electrothermal Microgrippers , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[9]  C. Billard,et al.  Integrated RF-MEMS switch based on a combination of thermal and electrostatic actuation , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[10]  Yasuroh Iriye,et al.  Experimental and theoretical study of an on-wall in-tube flexible thermal sensor , 2007 .

[11]  Harry E. Stephanou,et al.  Electrothermoelastic modeling of MEMS gripper , 2009 .

[12]  Takehiko Kitamori,et al.  Thermal lens micro optical systems. , 2005, Analytical chemistry.

[13]  Huikai Xie,et al.  A thermal bimorph micromirror with large bi-directional and vertical actuation , 2005 .

[14]  Chii-Wann Lin,et al.  Low Power Consumption Design of Micro-machined Thermal Sensor for Portable Spirometer , 2005 .

[15]  Jan Peirs,et al.  Design of micromechatronic systems: scale laws, technologies, and medical applications , 2001 .

[16]  A. Louche,et al.  Study of the thermal behaviour of a production unit of concrete structural components , 2004 .

[17]  Pasqualina M. Sarro,et al.  Powerful polymeric thermal microactuator with embedded silicon microstructure , 2007 .

[18]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[19]  J. V. Osborn,et al.  Fabrication, Characterization, and Thermal Failure Analysis of a Micro Hot Plate Chemical Sensor Substrate , 2004 .

[20]  Deepak Uttamchandani,et al.  Modified asymmetric micro-electrothermal actuator: analysis and experimentation , 2004 .

[21]  H. Pollock,et al.  Photo Thermal Micro-Spectroscopy — A New Method for Infared Analysis of Materials , 2005 .

[22]  Michaël Gauthier,et al.  Dynamic modelling for a submerged freeze microgripper using thermal networks , 2010 .

[23]  G. K. Ananthasuresh,et al.  Micromechanical Devices With Embedded Electro-Thermal-Compliant Actuation , 1999, Micro-Electro-Mechanical Systems (MEMS).

[24]  Simon S. Ang,et al.  Fabrication, modeling and testing of a thin film Au/Ti microheater , 2007 .

[25]  Qing-An Huang,et al.  A nodal analysis model for the out-of-plane beamshape electrothermal microactuator , 2008 .

[26]  Jan G. Korvink,et al.  MEMS Compact Modeling Meets Model Order Reduction: Examples of the Application of Arnoldi Methods to Microsystem Devices , 2004 .

[27]  Force measurements on U-shaped electrothermal microactuators: Applications to packaging , 2008 .

[28]  Haralampos Pozidis,et al.  A servomechanism for a micro-electro-mechanical-system-based scanning-probe data storage device , 2004 .

[29]  Fred L. Walls,et al.  Time and frequency , 2021, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[31]  Meng-Ju Lin,et al.  Modeling and analysis of electro‐thermal microactuators , 2009 .

[32]  D. Uttamchandani,et al.  Alignment and fixing of fiber optics based on electrothermal MEMS actuators , 2005, IEEE Photonics Technology Letters.

[33]  Joaquín Zueco,et al.  Network model for the numerical simulation of transient radiative transfer process between the thick walls of enclosures , 2006 .

[34]  George K. Knopf,et al.  Design, kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation applications , 2006 .

[35]  J. Huissoon,et al.  Modeling and analysis of a 2-DOF bidirectional electro-thermal microactuator , 2009 .

[36]  D. L. DeVoe Thermal issues in MEMS and microscale systems , 2002 .

[37]  Ivo W. Rangelow,et al.  Thermally driven microgripper as a tool for micro assembly , 2006 .

[38]  T. Hubbard,et al.  Time and frequency response of two-arm micromachined thermal actuators , 2003 .

[39]  John T. Wen,et al.  Dynamic modeling and input shaping of thermal bimorph MEMS actuators , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[40]  Qing-An Huang,et al.  A nodal analysis method for simulating the behavior of electrothermal microactuators , 2007 .

[41]  Wensyang Hsu,et al.  Design and fabrication of an electrothermal microactuator for multi-level conveying , 2006 .

[42]  Guang-Ren Shen,et al.  Performance improvement of an electrothermal microactuator fabricated using Ni-diamond nanocomposite , 2006, Journal of Microelectromechanical Systems.

[43]  Sung Jin Kim,et al.  Development of a micro-thermal flow sensor with thin-film thermocouples , 2006 .

[44]  Christian Lexcellent,et al.  An integrated shape memory alloy micro actuator controlled by thermoelectric effect , 2002 .

[45]  W. Fang,et al.  Thermal Actuated Solid Tunable Lens , 2006, IEEE Photonics Technology Letters.

[46]  Jan G. Korvink,et al.  Automatic Generation of Compact Electro-Thermal Models for Semiconductor Devices( the IEEE International Conference on SISPAD '02) , 2003 .

[47]  D. D’Amore,et al.  Modeling the thermal response of semiconductor devices through equivalent electrical networks , 2002 .

[48]  E. Bassous,et al.  Ink jet printing nozzle arrays etched in silicon , 1977 .

[49]  M. Sinclair,et al.  A high force low area MEMS thermal actuator , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[50]  Bart Vandevelde,et al.  A generic methodology for deriving compact dynamic thermal models, applied to the PSGA package , 1998, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A.

[51]  Kwang-Cheol Lee,et al.  Fabrication of an electrothermally actuated electrostatic microgripper , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[52]  Vladimír Székely,et al.  Characterization and modeling of electro-thermal MEMS structures , 2009 .

[53]  Evgueni V. Bordatchev,et al.  Performance Characterization of In-plane Electro-thermally Driven Linear Microactuators , 2006 .

[54]  J. Samitier,et al.  Dynamic compact thermal models with multiple power sources: application to an ultrathin chip stacking technology , 2005, IEEE Transactions on Advanced Packaging.

[55]  V. Szekely,et al.  Identification of RC networks by deconvolution: chances and limits , 1998 .

[56]  Mahnaz Shamshirsaz,et al.  Influence of material stiffness and geometrical variations on the electro-thermally driven microactuator performance , 2008 .

[57]  Gabor Miskolczy,et al.  Design and fabrication of a MULTI-FOIL® insulation system for a solar bimodal power and propulsion system , 1997 .

[58]  Wen J. Li,et al.  A thermally actuated polymer micro robotic gripper for manipulation of biological cells , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[59]  L. Codecasa,et al.  Compact Models of Dynamic Thermal Networks with Many Heat Sources , 2007, IEEE Transactions on Components and Packaging Technologies.

[60]  J. Korvink,et al.  Mor4ansys: Generating compact models directly from ANSYS models , 2004 .

[61]  Michaël Gauthier,et al.  Principle of a Submerged Freeze Gripper for Microassembly , 2008, IEEE Transactions on Robotics.

[62]  Werner Rieder,et al.  Arc restrikes yielding back-commutations in the contact gap of low voltage interrupters , 1998, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A.

[63]  F.L. Lewis,et al.  Method for Determining a Dynamical State–Space Model for Control of Thermal MEMS Devices , 2005, Journal of Microelectromechanical Systems.